110,901 research outputs found

    A baseband wireless spectrum hypervisor for multiplexing concurrent OFDM signals

    Get PDF
    The next generation of wireless and mobile networks will have to handle a significant increase in traffic load compared to the current ones. This situation calls for novel ways to increase the spectral efficiency. Therefore, in this paper, we propose a wireless spectrum hypervisor architecture that abstracts a radio frequency (RF) front-end into a configurable number of virtual RF front ends. The proposed architecture has the ability to enable flexible spectrum access in existing wireless and mobile networks, which is a challenging task due to the limited spectrum programmability, i.e., the capability a system has to change the spectral properties of a given signal to fit an arbitrary frequency allocation. The proposed architecture is a non-intrusive and highly optimized wireless hypervisor that multiplexes the signals of several different and concurrent multi-carrier-based radio access technologies with numerologies that are multiple integers of one another, which are also referred in our work as radio access technologies with correlated numerology. For example, the proposed architecture can multiplex the signals of several Wi-Fi access points, several LTE base stations, several WiMAX base stations, etc. As it able to multiplex the signals of radio access technologies with correlated numerology, it can, for instance, multiplex the signals of LTE, 5G-NR and NB-IoT base stations. It abstracts a radio frequency front-end into a configurable number of virtual RF front ends, making it possible for such different technologies to share the same RF front-end and consequently reduce the costs and increasing the spectral efficiency by employing densification, once several networks share the same infrastructure or by dynamically accessing free chunks of spectrum. Therefore, the main goal of the proposed approach is to improve spectral efficiency by efficiently using vacant gaps in congested spectrum bandwidths or adopting network densification through infrastructure sharing. We demonstrate mathematically how our proposed approach works and present several simulation results proving its functionality and efficiency. Additionally, we designed and implemented an open-source and free proof of concept prototype of the proposed architecture, which can be used by researchers and developers to run experiments or extend the concept to other applications. We present several experimental results used to validate the proposed prototype. We demonstrate that the prototype can easily handle up to 12 concurrent physical layers

    Resource Allocation Energy Efficient Algorithm for H-CRAN in 5G

    Get PDF
    In today's generation, the demand for data rates has also increased due to the rapid surge in the number of users. With this increasing growth, there is a need to develop the next fifth generation network keeping in mind the need to replace the current 4G cellular network. The fifth generation (5G) design in mobile communication technology has been developed keeping in mind all the communication needs of the users. Heterogeneous Cloud Radio Access Network (H-CRAN) has emerged as a capable architecture for the newly emerging network infrastructure for energy efficient networks and high data rate enablement. It is considered as the main technology. Better service quality has been achieved by developing small cells into macro cells through this type of network. In addition, the reuse of radio resources is much better than that of homogeneous networks. In the present paper, we propose the H-CRAN energy-efficient methods. This energy-efficient algorithm incorporates an energy efficient resource allocation management design to deal to heterogeneous cloud radio access networks in 5G. System throughput fulfillment is elevating by incorporating an efficient resource allocation design by the energy consumption model. The simulation results have been demonstrated by comparing the efficiency of the introduced design with the existing related design

    Service Orchestrator in Cloud RAN based Edge Cloud

    Get PDF
    International audienceFifth generation of mobile networks (5G) is designed to introduce a multitude of new services which require higher processing resources and lower latency. Cloud Radio Access Network (Cloud RAN) is one of the most promising solutions for next generation networks. The basic idea of C-RAN is to migrate Baseband Units (BBU) to the cloud for a centralized processing and management. In our work, we propose to extend C-RAN architecture with an edge cloud: the Cloud RRH in order to enhance the quality of service (QoS). In this paper we propose a service orchestrator in the Cloud RAN based edge cloud in order to enhance resources utilization while keeping a good QoS

    5G Radio Access Network Architecture for Terrestrial Broadcast Services

    Get PDF
    The 3rd Generation Partnership Project (3GPP) has defined based on the Long Term Evolution (LTE) enhanced Multicast Broadcast Multimedia Service (eMBMS) a set of new features to support the distribution of Terrestrial Broadcast services in Release 14. On the other hand, a new 5th Generation (5G) system architecture and radio access technology, 5G New Radio (NR), are being standardised from Release 15 onwards, which so far have only focused on unicast connectivity. This may change in Release 17 given a new Work Item set to specify basic Radio Access Network (RAN) functionalities for the provision of multicast/broadcast communications for NR. This work initially excludes some of the functionalities originally supported for Terrestrial Broadcast services under LTE e.g. free to air, receive-only mode, large-area single frequency networks, etc. This paper proposes an enhanced Next Generation RAN architecture based on 3GPP Release 15 with a series of architectural and functional enhancements, to support an efficient, flexible and dynamic selection between unicast and multicast/broadcast transmission modes and also the delivery of Terrestrial Broadcast services. The paper elaborates on the Cloud-RAN based architecture and proposes new concepts such as the RAN Broadcast/Multicast Areas that allows a more flexible deployment in comparison to eMBMS. High-level assessment methodologies including complexity analysis and inspection are used to evaluate the feasibility of the proposed architecture design and compare it with the 3GPP architectural requirements.Comment: 12 pages, 10 figures, 2 tables, IEEE Trans. Broadcastin

    An NDN-Enabled Fog Radio Access Network Architecture With Distributed In-Network Caching

    Full text link
    To meet the increasing demands of next-generation cellular networks (e.g., 6G), advanced networking technologies must be incorporated. On one hand, the Fog Radio Access Network (F-RAN), has been proposed as an enhancement to the Cloud Radio Access Network (C-RAN). On the other hand, efficient network architectures, such as Named Data Networking (NDN), have been recognized as prominent Future Internet candidates. Nevertheless, the interplay between F-RAN and NDN warrants further investigation. In this paper, we propose an NDN-enabled F-RAN architecture featuring a strategy for distributed in-network caching. Through a simulation study, we demonstrate the superiority of the proposed in-network caching strategy in comparison with baseline caching strategies in terms of network resource utilization, cache hits, and fronthaul channel usage.Comment: Accepted for publication by IEEE ICC 202

    Achieving Ultra-Reliable Low-Latency Communication (URLLC) in Next-Generation Cellular Networks with Programmable Data Planes

    Full text link
    Recent advancements in wireless technologies towards the next-generation cellular networks have brought a new era that made it possible to apply cellular technology on traditionally-wired networks with tighter requirements, such as industrial networks. The next-generation cellular technologies (e.g., 5G and Beyond) introduce the concept of ultra-reliable low-latency communications (URLLC). This thesis presents a Software-Defined Networking (SDN) architecture with programmable data planes for the next-generation cellular networks to achieve URLLC. Our design deploys programmable switches between the cellular core and Radio Access Networks (RAN) to monitor and modify data traffic at the line speed. We introduce the concept of \textit{intra-cellular optimization}, a relaxation in cellular networks to allow pre-authorized in-network devices to communicate without being required to signal the core network. We also present a control structure, Unified Control Plane (UCP), containing a novel Ethernet Layer control protocol and an adapted version of link-state routing information distribution among the programmable switches. Our implementation uses P4 with an 5G implementation (Open5Gs) and a UE/RAN simulator. We implement a Python simulator to evaluate the performance of our system on multi-switch topologies by simulating the switch behavior. Our evaluation indicates latency reduction up to 2x with \textit{intra-cellular optimization} compared to the conventional architecture. We show that our design has a ten-millisecond level of control latency, and achieves fine-grained network security and monitoring.Comment: M.Sc. Thesis, Bogazici University, 202

    Comparison of vertical handover decision-based techniques in heterogeneous networks

    Get PDF
    Industry leaders are currently setting out standards for 5G Networks projected for 2020 or even sooner. Future generation networks will be heterogeneous in nature because no single network type is capable of optimally meeting all the rapid changes in customer demands. Heterogeneous networks are typically characterized by some network architecture, base stations of varying transmission power, transmission solutions and the deployment of a mix of technologies (multiple radio access technologies). In heterogeneous networks, the processes involved when a mobile node successfully switches from one radio access technology to the other for the purpose of quality of service continuity is termed vertical handover or vertical handoff. Active calls that get dropped, or cases where there is discontinuity of service experienced by mobile users can be attributed to the phenomenon of delayed handover or an outright case of an unsuccessful handover procedure. This dissertation analyses the performance of a fuzzy-based VHO algorithm scheme in a Wi-Fi, WiMAX, UMTS and LTE integrated network using the OMNeT++ discrete event simulator. The loose coupling type network architecture is adopted and results of the simulation are analysed and compared for the two major categories of handover basis; multiple and single criteria based handover methods. The key performance indices from the simulations showed better overall throughput, better call dropped rate and shorter handover time duration for the multiple criteria based decision method compared to the single criteria based technique. This work also touches on current trends, challenges in area of seamless handover and initiatives for future Networks (Next Generation Heterogeneous Networks)

    Radio hardware virtualization for software-defined wireless networks

    Get PDF
    Software-Defined Network (SDN) is a promising architecture for next generation Internet. SDN can achieve Network Function Virtualization much more efficiently than conventional architectures by splitting the data and control planes. Though SDN emerged first in wired network, its wireless counterpart Software-Defined Wireless Network (SDWN) also attracted an increasing amount of interest in the recent years. Wireless networks have some distinct characteristics compared to the wired networks due to the wireless channel dynamics. Therefore, network controllers present some extra degrees of freedom, such as taking measurements against interference and noise, or adapting channels according to the radio spectrum occupation. These specific characteristics bring about more challenges to wireless SDNs. Currently, SDWN implementations are mainly using customized firmware, such as OpenWRT, running on an embedded application processor in commercial WiFi chips, and restricted to layers above lower Media Access Control. This limitation comes from the fact that radio hardware usually require specific drivers, which have a proprietary implementation by various chipset vendors. Hence, it is difficult, if not impossible, to achieve virtualization on the radio hardware. However, this status has been changing as Software-Defined Radio (SDR) systems open up the entire radio communication stack to radio hobbyists and researchers. The bridge between SDR and SDN will make it possible to bring the softwarization and virtualization of wireless networks down to the physical layer, which will unlock the full potential of SDWN. This paper investigates the necessity and feasibility of extending the virtualization of wireless networks towards the radio hardware. A SDR architecture is presented for radio hardware virtualization in order to facilitate SDWN design and experimentation. We do believe that by adopting the virtualization-oriented hardware accelerator design presented here, an all-layer end-to-end high performance SDWN can be achieved

    Analysis of security at the Near-real-time RIC xApps based on O-RAN-defined use cases

    Get PDF
    The Open Radio Access Network Alliance (O-RAN Alliance) is a group of industry and academic organizations that strive to realize the vision of next-generation cellular networks. Using standardized interfaces, telecommunications operators can operate multi-vendor infrastructure and deliver high-speed services to their mobile users. Additionally, the O-RAN Alliance has standardized an Open Radio Access Network (RAN) architecture based on the Third Generation Partnership Project (3GPP) and other standards. User planes and control planes are currently separate in RAN architecture. The separation makes it easier to accommodate network function virtualization methods required for 5G, enabling it to be more flexible. To help in the management of resources, the O-RAN standard proposes the use of xApps, i.e., dedicated applications that can be customly installed by the network operatior and that can be purchased from different vendors. For this reason, securely managing xApps represents a significant challenge for the security of the overall network.\\ In this thesis, we analyze the security of xApps and their proposed use cases. Based on the applications porposed by the O-RAN alliance, we provide an in depth analysis of the vulnerabilities and their impact on the network. We also discuss different features of attacks, such as reproducibility, stealthiness, exposure, and impact. Based on our analysis, we conclude that significant work is still to be made to guarantee the security of O-RAN and in particular of its xApps. This thesis hence provides a baseline for future research in the domain of security and privacy for next generation communication network
    • …
    corecore