8,789 research outputs found

    Non-equispaced B-spline wavelets

    Full text link
    This paper has three main contributions. The first is the construction of wavelet transforms from B-spline scaling functions defined on a grid of non-equispaced knots. The new construction extends the equispaced, biorthogonal, compactly supported Cohen-Daubechies-Feauveau wavelets. The new construction is based on the factorisation of wavelet transforms into lifting steps. The second and third contributions are new insights on how to use these and other wavelets in statistical applications. The second contribution is related to the bias of a wavelet representation. It is investigated how the fine scaling coefficients should be derived from the observations. In the context of equispaced data, it is common practice to simply take the observations as fine scale coefficients. It is argued in this paper that this is not acceptable for non-interpolating wavelets on non-equidistant data. Finally, the third contribution is the study of the variance in a non-orthogonal wavelet transform in a new framework, replacing the numerical condition as a measure for non-orthogonality. By controlling the variances of the reconstruction from the wavelet coefficients, the new framework allows us to design wavelet transforms on irregular point sets with a focus on their use for smoothing or other applications in statistics.Comment: 42 pages, 2 figure

    Level Set Methods for Stochastic Discontinuity Detection in Nonlinear Problems

    Full text link
    Stochastic physical problems governed by nonlinear conservation laws are challenging due to solution discontinuities in stochastic and physical space. In this paper, we present a level set method to track discontinuities in stochastic space by solving a Hamilton-Jacobi equation. By introducing a speed function that vanishes at discontinuities, the iso-zero of the level set problem coincide with the discontinuities of the conservation law. The level set problem is solved on a sequence of successively finer grids in stochastic space. The method is adaptive in the sense that costly evaluations of the conservation law of interest are only performed in the vicinity of the discontinuities during the refinement stage. In regions of stochastic space where the solution is smooth, a surrogate method replaces expensive evaluations of the conservation law. The proposed method is tested in conjunction with different sets of localized orthogonal basis functions on simplex elements, as well as frames based on piecewise polynomials conforming to the level set function. The performance of the proposed method is compared to existing adaptive multi-element generalized polynomial chaos methods

    Asymptotics for Hermite-Pade rational approximants for two analytic functions with separated pairs of branch points (case of genus 0)

    Full text link
    We investigate the asymptotic behavior for type II Hermite-Pade approximation to two functions, where each function has two branch points and the pairs of branch points are separated. We give a classification of the cases such that the limiting counting measures for the poles of the Hermite-Pade approximants are described by an algebraic function of order 3 and genus 0. This situation gives rise to a vector-potential equilibrium problem for three measures and the poles of the common denominator are asymptotically distributed like one of these measures. We also work out the strong asymptotics for the corresponding Hermite-Pade approximants by using a 3x3 Riemann-Hilbert problem that characterizes this Hermite-Pade approximation problem.Comment: 102 pages, 31 figure

    On the Equivalence Between a Minimal Codomain Cardinality Riesz Basis Construction, a System of Hadamard–Sylvester Operators, and a Class of Sparse, Binary Optimization Problems

    Get PDF
    Piecewise, low-order polynomial, Riesz basis families are constructed such that they share the same coefficient functionals of smoother, orthonormal bases in a localized indexing subset. It is shown that a minimal cardinality basis codomain can be realized by inducing sparsity, via l1 regularization, in the distributional derivatives of the basis functions and that the optimal construction can be found numerically by constrained binary optimization over a suitably large dictionary. Furthermore, it is shown that a subset of these solutions are equivalent to a specific, constrained analytical solution, derived via Sylvester-type Hadamard operators

    Interior numerical approximation of boundary value problems with a distributional data

    Full text link
    We study the approximation properties of a harmonic function u \in H\sp{1-k}(\Omega), k>0k > 0, on relatively compact sub-domain AA of Ω\Omega, using the Generalized Finite Element Method. For smooth, bounded domains Ω\Omega, we obtain that the GFEM--approximation uSu_S satisfies \|u - u_S\|_{H\sp{1}(A)} \le C h^{\gamma}\|u\|_{H\sp{1-k}(\Omega)}, where hh is the typical size of the ``elements'' defining the GFEM--space SS and γ0\gamma \ge 0 is such that the local approximation spaces contain all polynomials of degree k+γ+1k + \gamma + 1. The main technical result is an extension of the classical super-approximation results of Nitsche and Schatz \cite{NitscheSchatz72} and, especially, \cite{NitscheSchatz74}. It turns out that, in addition to the usual ``energy'' Sobolev spaces H1H^1, one must use also the negative order Sobolev spaces H\sp{-l}, l0l \ge 0, which are defined by duality and contain the distributional boundary data.Comment: 23 page
    corecore