40,832 research outputs found

    An outer approximation algorithm for multi-objective mixed-integer linear and non-linear programming

    Full text link
    In this paper, we present the first outer approximation algorithm for multi-objective mixed-integer linear programming problems with any number of objectives. The algorithm also works for certain classes of non-linear programming problems. It produces the non-dominated extreme points as well as the facets of the convex hull of these points. The algorithm relies on an oracle which solves single-objective weighted-sum problems and we show that the required number of oracle calls is polynomial in the number of facets of the convex hull of the non-dominated extreme points in the case of multiobjective mixed-integer programming (MOMILP). Thus, for MOMILP problems for which the weighted-sum problem is solvable in polynomial time, the facets can be computed with incremental-polynomial delay. From a practical perspective, the algorithm starts from a valid lower bound set for the non-dominated extreme points and iteratively improves it. Therefore it can be used in multi-objective branch-and-bound algorithms and still provide a valid bound set at any stage, even if interrupted before converging. Moreover, the oracle produces Pareto optimal solutions, which makes the algorithm also attractive from the primal side in a multi-objective branch-and-bound context. Finally, the oracle can also be called with any relaxation of the primal problem, and the obtained points and facets still provide a valid lower bound set. A computational study on a set of benchmark instances from the literature and new non-linear multi-objective instances is provided.Comment: 21 page

    A stochastic approximation algorithm for stochastic semidefinite programming

    Full text link
    Motivated by applications to multi-antenna wireless networks, we propose a distributed and asynchronous algorithm for stochastic semidefinite programming. This algorithm is a stochastic approximation of a continous- time matrix exponential scheme regularized by the addition of an entropy-like term to the problem's objective function. We show that the resulting algorithm converges almost surely to an ε\varepsilon-approximation of the optimal solution requiring only an unbiased estimate of the gradient of the problem's stochastic objective. When applied to throughput maximization in wireless multiple-input and multiple-output (MIMO) systems, the proposed algorithm retains its convergence properties under a wide array of mobility impediments such as user update asynchronicities, random delays and/or ergodically changing channels. Our theoretical analysis is complemented by extensive numerical simulations which illustrate the robustness and scalability of the proposed method in realistic network conditions.Comment: 25 pages, 4 figure

    Toward Energy Efficient Multiuser IRS-Assisted URLLC Systems: A Novel Rank Relaxation Method

    Full text link
    This paper proposes an energy efficient resource allocation design algorithm for an intelligent reflecting surface (IRS)-assisted downlink ultra-reliable low-latency communication (URLLC) network. This setup features a multi-antenna base station (BS) transmitting data traffic to a group of URLLC users with short packet lengths. We maximize the total network's energy efficiency (EE) through the optimization of active beamformers at the BS and passive beamformers (a.k.a. phase shifts) at the IRS. The main non-convex problem is divided into two sub-problems. An alternating optimization (AO) approach is then used to solve the problem. Through the use of the successive convex approximation (SCA) with a novel iterative rank relaxation method, we construct a concave-convex objective function for each sub-problem. The first sub-problem is a fractional program that is solved using the Dinkelbach method and a penalty-based approach. The second sub-problem is then solved based on semi-definite programming (SDP) and the penalty-based approach. The iterative solution gradually approaches the rank-one for both the active beamforming and unit modulus IRS phase-shift sub-problems. Our results demonstrate the efficacy of the proposed solution compared to existing benchmarks

    Joint User-Association and Resource-Allocation in Virtualized Wireless Networks

    Get PDF
    In this paper, we consider a down-link transmission of multicell virtualized wireless networks (VWNs) where users of different service providers (slices) within a specific region are served by a set of base stations (BSs) through orthogonal frequency division multiple access (OFDMA). In particular, we develop a joint BS assignment, sub-carrier and power allocation algorithm to maximize the network throughput, while satisfying the minimum required rate of each slice. Under the assumption that each user at each transmission instance can connect to no more than one BS, we introduce the user-association factor (UAF) to represent the joint sub-carrier and BS assignment as the optimization variable vector in the mathematical problem formulation. Sub-carrier reuse is allowed in different cells, but not within one cell. As the proposed optimization problem is inherently non-convex and NP-hard, by applying the successive convex approximation (SCA) and complementary geometric programming (CGP), we develop an efficient two-step iterative approach with low computational complexity to solve the proposed problem. For a given power-allocation, Step 1 derives the optimum userassociation and subsequently, for an obtained user-association, Step 2 find the optimum power-allocation. Simulation results demonstrate that the proposed iterative algorithm outperforms the traditional approach in which each user is assigned to the BS with the largest average value of signal strength, and then, joint sub-carrier and power allocation is obtained for the assigned users of each cell. Especially, for the cell-edge users, simulation results reveal a coverage improvement up to 57% and 71% for uniform and non-uniform users distribution, respectively leading to more reliable transmission and higher spectrum efficiency for VWN

    Simpler and Better Algorithms for Minimum-Norm Load Balancing

    Get PDF
    Recently, Chakrabarty and Swamy (STOC 2019) introduced the minimum-norm load-balancing problem on unrelated machines, wherein we are given a set J of jobs that need to be scheduled on a set of m unrelated machines, and a monotone, symmetric norm; We seek an assignment sigma: J -> [m] that minimizes the norm of the resulting load vector load_{sigma} in R_+^m, where load_{sigma}(i) is the load on machine i under the assignment sigma. Besides capturing all l_p norms, symmetric norms also capture other norms of interest including top-l norms, and ordered norms. Chakrabarty and Swamy (STOC 2019) give a (38+epsilon)-approximation algorithm for this problem via a general framework they develop for minimum-norm optimization that proceeds by first carefully reducing this problem (in a series of steps) to a problem called min-max ordered load balancing, and then devising a so-called deterministic oblivious LP-rounding algorithm for ordered load balancing. We give a direct, and simple 4+epsilon-approximation algorithm for the minimum-norm load balancing based on rounding a (near-optimal) solution to a novel convex-programming relaxation for the problem. Whereas the natural convex program encoding minimum-norm load balancing problem has a large non-constant integrality gap, we show that this issue can be remedied by including a key constraint that bounds the "norm of the job-cost vector." Our techniques also yield a (essentially) 4-approximation for: (a) multi-norm load balancing, wherein we are given multiple monotone symmetric norms, and we seek an assignment respecting a given budget for each norm; (b) the best simultaneous approximation factor achievable for all symmetric norms for a given instance
    • …
    corecore