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Abstract
Recently, Chakrabarty and Swamy (STOC 2019) introduced the minimum-norm load-balancing
problem on unrelated machines, wherein we are given a set J of jobs that need to be scheduled
on a set of m unrelated machines, and a monotone, symmetric norm; We seek an assignment
σ : J 7→ [m] that minimizes the norm of the resulting load vector ~loadσ ∈ Rm+ , where ~loadσ(i) is the
load on machine i under the assignment σ. Besides capturing all `p norms, symmetric norms also
capture other norms of interest including top-` norms, and ordered norms. Chakrabarty and Swamy
(STOC 2019) give a (38 + ε)-approximation algorithm for this problem via a general framework they
develop for minimum-norm optimization that proceeds by first carefully reducing this problem (in a
series of steps) to a problem called min-max ordered load balancing, and then devising a so-called
deterministic oblivious LP-rounding algorithm for ordered load balancing.

We give a direct, and simple 4+ε-approximation algorithm for the minimum-norm load balancing
based on rounding a (near-optimal) solution to a novel convex-programming relaxation for the
problem. Whereas the natural convex program encoding minimum-norm load balancing problem
has a large non-constant integrality gap, we show that this issue can be remedied by including a key
constraint that bounds the “norm of the job-cost vector.” Our techniques also yield a (essentially)
4-approximation for: (a) multi-norm load balancing, wherein we are given multiple monotone
symmetric norms, and we seek an assignment respecting a given budget for each norm; (b) the best
simultaneous approximation factor achievable for all symmetric norms for a given instance.
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1 Introduction

In the minimum-norm load-balancing (MinNormLB) problem, we are given a set J of n
jobs, a set of m machines, and processing times pij ≥ 0 for all i ∈ [m] and j ∈ J . We use
[m] to denote {1, . . . ,m}. We are also given a monotone, symmetric norm f : Rm → R+.
Recall that by definition of norm, this means that f satisfies: (i) f(x) = 0 iff x = 0; (ii)
f(x + y) ≤ f(x) + f(y) for all x, y ∈ Rm (triangle inequality); and (iii) f(λx) = |λ|f(x)
for all x ∈ Rm, λ ∈ R (homogeneity). (Properties (ii) and (iii) imply that f is convex.)
Monotonicity means that f(x) ≤ f(y) for all x, y ∈ Rm such that xi(yi − xi) ≥ 0 for all
i ∈ [m]; symmetry means that permuting the coordinates of x does not affect its norm, i.e.,
f(x) = f

(
{xπ(i)}i∈[m]

)
for every x ∈ Rm and every permutation π : [m] 7→ [m].
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27:2 Minimum-Norm Load Balancing

The goal is to find an assignment σ : J → [m] that minimizes the norm (under f)
of the induced load vector. More precisely, an assignment σ induces the m-dimensional
load vector ~loadσ ∈ Rm+ where ~loadσ(i) :=

∑
j:σ(j)=i pij . The objective is to find σ that

minimizes f( ~loadσ).
Besides `p-norms, monotone symmetric norms capture Top-` norms – sum of ` largest

coordinates in absolute value – and ordered norms (which are a nonnegative linear combination
of Top-` norms). The minimum-norm load-balancing problem was recently introduced
by Chakrabarty and Swamy [8]. They develop a general framework for minimum-norm
optimization problems based on reducing the problem to a special case called min-max
ordered optimization, and devise a so-called deterministic oblivious rounding [8] to tackle
the latter problem, which results in a (38 + ε)-approximation algorithm for MinNormLB.

Our main result is a simpler 4(1 + ε)-approximation algorithm for MinNormLB that runs
in time poly

(
input size, log( 1

ε )
)
.

I Theorem 1. One can achieve a 4(1 + ε)-approximation for MinNormLB in time
poly

(
input size, log( 1

ε )
)
, assuming we have a value-oracle and subgradient-oracle for the

norm f . More generally, if we have ω-approximate value- and subgradient- oracles for f (see
Section 4), then one can compute a 4(1 + 5ω)(1 + ε)-approximation to MinNormLB in time
poly

(
input size, log( 1

ε )
)
.

This is a substantial improvement over the approximation factor of 38 obtained in [8].
Moreover, our algorithm is also simpler and more direct than the one in [8]. Notably, our
approximation factor is close to the best-known approximation factor (of 2) known for the
`∞ norm (wherein MinNormLB becomes the classical minimum-makespan problem). Our
algorithm proceeds by rounding the solution to a novel convex-programming relaxation of
the problem. The convex program can be solved (approximately) using an (approximate)
first-order oracle for f that returns the function value, and its subgradient at a given point.

Our techniques also yield a 4(1 + ε)-approximation for (see Section 5): (a) multi-norm
load balancing, wherein we are given multiple monotone, symmetric norms and budgets
for each norm, and we seek an assignment (approximately) respecting these budgets; and
(b) the best simultaneous approximation factor achievable for all symmetric norms for a
given instance.

Motivation and perspective

One of the reasons for studying MinNormLB is that it generalizes various load-balancing
problems considered in the literature, and its study therefore yields a unified methodology
for dealing with monotone, symmetric norms.

Load balancing under the `∞ norm, that is, minimizing the maximum load (also called
the makespan) is a classical scheduling problem that has been extensively studied [18, 23, 10,
24, 6, 15] over the past three decades, both in its full generality for unrelated machines and
for various special cases. The best known approximation factor for the unrelated-machines
setting is still 2 [18], and it is NP-hard to obtain an approximation factor better than
3/2 [18]. For general `p-norms, Azar and Epstein [3] obtain a 2-approximation, and improved
guarantees have been obtained for constant p [3, 16, 19]. More recently, the load-balancing
problem has also been considered for other monotone, symmetric norms. Top-`- and ordered-
norms have been proposed in the location-theory literature (see “Other related work”) as
a means of interpolating between the `1 and `∞ norms (and an alternative to using `p
norms), and motivated by this, Chakrabarty and Swamy [8] studied the Top-` load-balancing



D. Chakrabarty and C. Swamy 27:3

problem – minimize the total load on the ` most loaded machines – and the ordered load-
balancing problem. They give a (2 + ε)-approximation algorithm in both settings, and also
(as noted earlier) devise a (38 + ε)-approximation algorithm for an arbitrary monotone,
symmetric norm.

For load balancing, there has been considerable interest in simultaneous optimization.
Given an instance, the objective is to find an assignment that simultaneously approximates a
large suite of objective functions. Building upon previous works [2, 4], Goel and Meyerson [11]
describe a 2-approximation for the problem of simultaneously approximating all monotone
symmetric norms in the restricted assignment setting. However, it is known that such an
O(1)-factor is impossible in the unrelated-machines setting [4, 11]. As a byproduct of their
MinNormLB algorithm, in the unrelated-machines setting, Chakrabarty and Swamy [8] give an
instance-wise (38 + ε)-approximation to the best simultaneous approximation-factor possible
for the instance. To elaborate, let α∗I denote the smallest factor for instance I such that there
exists a schedule that achieves an α∗I-approximation for all monotone, symmetric norms;
[8] returns a schedule for I that achieves a 38(1 + ε)α∗I-approximation for all monotone,
symmetric norms. As mentioned above, we devise an algorithm that for every instance
I returns a schedule that simultaneously achieves a

(
4 + O(ε)

)
α∗I-approximation for all

monotone, symmetric norms (see Theorem 13).

Our techniques

Since a norm is a convex function, a natural convex-programming relaxation for MinNormLB
is to minimize the norm of the fractional load vector ~L = ~L(x) :=

{∑
j pijxij

}
i∈[m], where

the xijs are the usual variables denoting if job j is assigned to machine i, and we have the
usual job-assignment constraints encoding that every job is assigned to some machine. This
convex program, however, has a large integrality gap, even when f is the `∞-norm due to
the issue that the convex program could split a large job across multiple machines.

In the case of the `∞ norm (the makespan minimization problem), the typical way of
circumventing the above issue is to “guess” the optimal value, say T , and add constraints
to encode that no single job contributes more than T to the objective. The usual way of
capturing this is to explicitly set xij = 0 if pij > T . A less common, and weaker, way of
encoding this is to enforce that

∑
i pijxij ≤ T for all j, that is, the total processing time

contribution of any job j across the machines cannot exceed T .
For an arbitrary (monotone, symmetric) norm, it is unclear how to extend either of the

above approaches, since the contribution of a job to the objective is a now a somewhat vague
notion. One way to generalize things would be to encode (either explicitly or in the alternate
weaker sense above) that the “norm” of the job-cost vector is at most T , where the job-cost
vector is indexed by jobs and the cost for job j (under x) is Pj :=

∑
i pijxij . But the norm

f is defined over Rm, whereas the job-cost vector lies in Rn. For certain specific (families of)
norms – e.g., `p-norms, top-` norm, ordered norm – there is a natural version of the norm
over Rn,1 but what does such a constraint mean in general, and how can one encode this?

Our key insight, which leads to our convex program, is that one can capture the above
consideration by examining the vector ~P ∈ Rm comprising the costs of the m most-costly
jobs and enforcing the constraint f(~P ) ≤ T ; since f is monotone, this can be equivalently
encoded as f

(
{Pj}j∈S

)
≤ T for all S ⊆ J with |S| = m. It is not apparent that such a

1 For `p-norms, a variant of this that considers the `pp expression does work, but this crucially exploits
the separability of `pp [3].
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27:4 Minimum-Norm Load Balancing

constraint is valid, but we derive some insights about symmetric norms and show that this is
indeed the case (see Theorem 3). This yields our convex program (CP), which can be solved
efficiently (within ε additive error, for any ε > 0, in time poly

(
input size, ln(1/ε)

)
) using the

ellipsoid method provided we have a value oracle and subgradient oracle for f .
Rounding a solution x to the convex program is now quite easy. Let ~L ∈ Rm denote

the load-vector arising from x. We use a filtering step to ensure that each job j is only
assigned to machines i for which pij ≤ 2Pj . This causes a factor-2 blowup in the machine
loads. Now we use the rounding algorithm of Shmoys and Tardos [23] for the generalized
assignment problem (GAP). The resulting assignment σ has load-vector at most 2~L + ~Z,
where ~Z ∈ Rm and Zi = maxj:σ(j)=i pij ; the filtering step and our constraints ensure that
f(~Z) ≤ 2T , so f(2~L+ ~Z) ≤ 4T . Our algorithm is much more direct than the one in [8]: it
avoids the sequence of steps (and the associated approximation-factor losses) used in [8],
wherein MinNormLB is reduced to a special case, called min-max ordered load balancing,
which is then tackled by a deterministic oblivious rounding procedure.

Other related work

The algorithmic problem of finding minimum-norm solutions has also been investigated in
the context of k-clustering, wherein the goal is to open k “facilities” in a metric space to serve
a set of clients, and the cost vector induced by a solution is the vector of distances of clients
to their nearest open facility. The setting of `p-norms, especially when p ∈ {1, 2,∞} (where
the problem is called the k-{median,means, center} problem) has been extensively studied,
and O(1)-approximations are known in these settings [13, 9, 14, 1]. Top-` and ordered norms
have been proposed in the context of k-clustering in the Operations Research literature
(see, e.g., [21, 17]), but constant-factor approximations for these norms were obtained quite
recently [5, 7, 8]. Furthermore, Chakrabarty and Swamy [8] utilize their general framework to
obtain an O(1)-approximation for the k-clustering problem under any monotone, symmetric
norm. We do not know of any alternate approach that works in the k-clustering setting.

2 A convex-programming relaxation

By possibly adding dummy jobs with zero processing times, we may assume without loss of
generality that n ≥ m. A natural convex program for MinNormLB has non-negative variables
xij denoting if job j is assigned to machine i (or the extent of j assigned to i) with the
constraint (1) encoding that every job is assigned to a machine. These x-variables define
a load vector ~L =

(
Li = Li(x)

)
i∈[m] where Li(x) =

∑
j∈J pijxij . The objective seeks to

minimize T := f
(
~L
)
. As noted earlier, this convex program has a large integrality gap (even

when f is the `∞ norm). We strengthen the convex program as follows.
Given the x-assignment, define Pj = Pj(x) :=

∑
i pijxij , which is the load incurred by

the fractional solution for scheduling job j. Fix any subset S ⊆ J with |S| = m. Note that
this is well-defined since we have assumed n ≥ m. This defines the m-dimensional vector
~PS := {Pj}j∈S . We add the constraints (6) enforcing that f(~PS) ≤ T for each such subset S.
Throughout, we use i to index the machines in [m], and j to index the jobs in J .

min T (CP)

s.t.
∑
i

xij ≥ 1 ∀j ∈ J (1)

x ≥ 0 (2)

Li =
∑
j∈J

pijxij ∀i ∈ [m] (3)

Pj =
∑
i∈[m]

pijxij∀j ∈ J (4)

f(~L) ≤ T (5)

f(~PS)≤ T ∀S⊆J, |S|=m (6)
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Let OPT := OPTCP denote the optimal value of (CP), and let O∗ be the optimal value
of the minimum-norm load-balancing problem. Since the xij-variables completely determine
a solution to (CP), we will sometimes abuse notation and say that x is a feasible solution
to (CP). We argue that (CP) is a valid relaxation. The proof uses the following simple
observation about symmetric convex functions.

B Claim 2. Let h : Rm → R be a symmetric convex function. Let v ∈ Rm+ , and i, j ∈ [m].
Let w ∈ Rm+ be the vector where wi = vi + vj , wj = 0, and wk = vk otherwise. Then,
h(v) ≤ h(w).

Proof. Consider the vector w′ constructed in a symmetric fashion to w: set w′j = vi + vj ,
w′i = 0, and w′k = vk otherwise. Observe that v is a convex combination of w and w′ (we
have v = vi

vi+vj
· w + vj

vi+vj
· w′), and h(w) = h(w′) since h is symmetric. By convexity and

symmetry, h(v) ≤ max
{
h(w), h(w′)

}
= h(w). C

I Theorem 3. Constraints (6) are valid, and so for any instance of MinNormLB, we have
OPT ≤ O∗.

Proof. Let σ∗ : J → [m] be an optimal assignment, so f( ~loadσ∗) = O∗. We now describe a
feasible solution to (CP) with T = O∗. Set xij = 1 if σ∗(j) = i, and 0 otherwise. Clearly,
constraints (1) hold. Note, Li = loadσ∗(i) for all i, and Pj = pσ∗(j)j for all j. Therefore, (5)
holds with equality.

The interesting bit is to show that (6) holds. To that end, fix a subset S ⊆ J of m jobs.
Consider the load vector induced by jobs in S. That is, define L′i :=

∑
j∈S:σ∗(j)=i pij . Note

that ~L coordinate wise dominates ~L′, so by monotonicity of f , we have f( ~L′) ≤ f(~L) = T .
We argue that f(~PS) ≤ f( ~L′), which will complete the proof. To see this, first note

that if σ∗ assigns the jobs in S to distinct machines, then ~PS is simply a permutation of
~L′, so f(~PS) = f( ~L′). Otherwise, observe that ~L′ can be obtained from ~PS by applying the
operation in Claim 2 to pairs of jobs in S assigned to the same machine; therefore, we have
f(~PS) ≤ f( ~L′). J

The proof above relied only on convexity, monotonicity, and symmetry of the function
f . In Section 3 (see Theorem 4) we describe a rounding procedure which takes a feasible
solution for (CP) and returns an assignment with a factor-4 blow-up in the objective. This
will utilize the homogeneity of the norm f . In Section 4, we show how to (approximately)
solve (CP) given an (approximate) first-order oracle for the underlying norm (see Theorem 9).
Combining these two results yields Theorem 1.

3 The rounding algorithm

We now describe and analyze our simple rounding algorithm, which yields the following
guarantee.

I Theorem 4. Given a feasible fractional solution
(
x = {xij}i,j , ~L, ~P , T

)
to (CP), there is

a polynomial time algorithm to obtain a schedule σ with f( ~loadσ) ≤ 4T .

Proof. First, we filter x. For every i, j, we set x̂ij = 2xij if pij ≤ 2Pj , and 0 otherwise. A
standard Markov-inequality style argument shows that x̂ satisfies (1). Now we apply the
Shmoys-Tardos GAP-rounding algorithm [23] to x̂. This yields an assignment σ : J → [m]
such that: for every job j, we have σ(j) = i only if x̂ij > 0, and for every machine i, we have
loadσ(i) ≤

∑
j∈J pij x̂ij + Zi ≤ 2Li + Zi, where Zi = maxj:σ(j)=i pij . Thus, ~loadσ ≤ 2~L+ ~Z.

ESA 2019



27:6 Minimum-Norm Load Balancing

Let ji be a maximum-length job assigned to machine i in σ, i.e., σ(ji) = i and Zi = piji . By
our filtering step, we know that Zi ≤ 2Pji

. Let S = {ji : i ∈ [m]}. Then ~Z := (Zi)i∈[m] ≤ 2~PS .
By monotonicity, the triangle inequality, and homogeneity of f , we then obtain that

f( ~loadσ) ≤ 2f(~L) + f(~Z) ≤ 2T + 2f(~PS) ≤ 4T. J

Interestingly, and notably, observe that the rounding procedure above is oblivious to the
norm f : given a fractional solution x, the same rounding procedure works for all monotone,
symmetric norms. This will be useful in Section 5, where we seek an assignment that is
simultaneously good for multiple norms.

4 Solving the convex program

We now discuss how to solve the convex program (CP). To maintain the flow of reading,
proofs of certain technical claims are deferred to Section 6. It is well known [20, 12] that we
can efficiently solve a convex program minx∈S h(x) (where S ⊆ Rn is convex) to within any
additive error ε > 0 using the ellipsoid method provided that (we state things more precisely
below): (i) S has non-zero volume and is contained in some ball; (ii) we have a separation
oracle for S; (iii) we have a first-order oracle for h that given input x ∈ S, returns h(x), and
a subgradient of h at x. More generally, we show that by utilizing the machinery of Shmoys
and Swamy [22], even an approximate value and subgradient oracle suffices (see Theorem 9).
This is particularly relevant since the norm and/or components of the subgradient vector
may involve irrational numbers.

By scaling we may assume that all pijs are integers. Let O∗ denote the optimal value for
the MinNormLB instance. We can easily detect if O∗ = 0, since this implies an assignment with
0 load on every machine. Therefore, we assume O∗ ≥ 1. It will be convenient to reformulate
(CP) as follows. Let P :=

{
x ∈ R[m]×J :

∑
i xij ≥ 1 ∀j ∈ J, 0 ≤ xij ≤ 1 ∀i ∈ [m], j ∈ J

}
denote the feasible region for the assignment variables.

min g(x) := max
{
f
( ~L(x)

)
, max

S⊆J:|S|=m
f
( ~P (x)S

)}
s.t. x ∈ P. (CP’)

Note that the xijs are the only variables above. Recall that OPT is the optimal value of
(CP) (and (CP’)).

We recall a few standard concepts from optimization. Let h : Rk 7→ R and let ‖u‖ denote
the `2 norm of u.

We say that h has Lipschitz constant (at most) K if |h(v) − h(u)| ≤ K‖v − u‖ for all
u, v ∈ Rk.
We say that d ∈ Rk is a subgradient of h at u ∈ Rk if we have h(v)−h(u) ≥ d · (v−u) for
all v ∈ Rk. We say that d̂ is an ω-subgradient of h at u ∈ Rk if for every v ∈ Rk, we have
h(v)− h(u) ≥ d̂ · (v − u)− ωh(u); we call this the approximate-subgradient inequality.
An ω-first-order oracle for h is an algorithm that at any point u ∈ Rk, returns an estimate
est such that h(u) ≤ est ≤ (1 + ω)h(u), and an ω-subgradient of h at u.
(In the optimization literature, the notions of approximate first-order oracle and approx-
imate subgradient typically involve additive errors; since our problems are scale-invariant,
multiplicative approximations, where the error at u is measured relative to h(u), are more
apt here.)

We remark that since f is a norm, an ω-subgradient d̂ of f at u also yields an estimate
of f(u) as follows: taking v = ~0 and v = 2u respectively in the approximate-subgradient
inequality, we obtain the bounds d̂ · u ≥ (1 − ω)f(u) and d̂ · u ≤ (1 + ω)f(u). (Thus, an
ω-first-order oracle for f boils down to an ω-subgradient oracle for f .)
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By input size, we mean the total encoding length of the pijs. It is easy to separate over
P, and easy to find radii R, and 0 < V ≤ 1 such that P ⊆ B(0, R) := {x : ‖x‖ ≤ R}, P
contains a ball of radius V , and log

(
R
V

)
= poly(m,n). In particular, R =

√
mn suffices, and

P contains a ball of radius V = 0.5
m around the point x with xij = 1.5

m for all i, j. (We may
assume m ≥ 2 as otherwise the problem is trivial.) Throughout, we use Kf to denote an
efficiently-computable upper bound on the Lipschitz constant of f ; Lemma 8 shows how to
obtain this. Given a bound on the Lipschitz constant of f , one can compute an upper bound
on the Lipschitz constant of g.

B Claim 5. The Lipschitz constant of g is at most K =
√
mn ·maxi,j pij ·Kf .

I Theorem 6 (Follows from [20]; see also [12]). Let alg be a first-order oracle for f . Then, for
any η > 0, we can compute x∗ ∈ P such that g(x∗) ≤ OPT + η in poly

(
input size, log(KfR

ηV )
)

time and using poly
(
input size, log(KfR

ηV )
)
calls to alg.

Theorem 6 follows from the ellipsoid method for convex optimization, due to the bound
on the Lipschitz constant of g obtained from Claim 5, and since one can use alg to obtain
a first-order oracle for g. We next use [22] to obtain a stronger result that utilizes only an
approximate first-order oracle for f .

I Theorem 7 (Lemma 4.5 in [22] paraphrased). Consider a convex optimization problem:
minx∈P h(x). Let Kh be a known bound on the Lipschitz constant of h. Let ω < 1 and η > 0.
In poly

(
m,n, log(KhR

V η )
)
time and using poly

(
m,n, log(KhR

V η )
)
calls to an ω-first-order oracle

for h, one can compute a solution x∗ ∈ P such that h(x∗) ≤ 1+ω
1−ω ·

(
minx∈P h(x) + η

)
.

To utilize Theorem 7 to solve (CP), we show how to obtain an approximate first-order
oracle for g given one for f . Also, in order to convert the additive error in Theorem 7 (and
Theorem 6) into a multiplicative guarantee, we show how to obtain a lower bound lb on O∗
such that Kf/lb is small.

I Lemma 8. Let alg be an ω-first-order oracle for f (where ω < 1).
We can obtain a 2ω-first-order oracle for g using O(1) calls to alg.
Using alg, we can efficiently compute lb ≤ O∗, and an upper bound Kf on the Lipschitz
constant of f such that Kf

lb ≤ 2
√
m.

I Theorem 9. Let alg be an ω-first-order oracle for f with ω ≤ 1
10 . Given a MinNormLB

instance with optimum value O∗, there is an algorithm that, for any ε > 0, computes a
feasible solution x∗ to (CP) of objective value g(x∗) ≤ (1 + 5ω)(1 + ε)O∗. The algorithm
runs in poly

(
input size, log( 1

ε )
)
time and makes poly

(
input size, log( 1

ε )
)
calls to alg.

Proof. This follows by combining Theorem 7 and Lemma 8. Recall that we are assuming that
O∗ ≥ 1. By part 8 of Lemma 8, we can compute a 2ω-first-order oracle for g. We use part 8 of
Lemma 8 to obtain lb and Kf . Now we apply Theorem 7 to the problem minx∈P g(x), taking
η = εlb. The point x∗ returned satisfies g(x∗) ≤ 1+2ω

1−2ω · (OPT + εlb) ≤ (1 + 5ω)(1 + ε)O∗.
Recall that log(R/V ) = poly(m,n). Since we have an upper bound K on the Lipschitz

constant of g, where logK = poly(input size)·logKf (Claim 5), the running time and number
of calls to the first-order oracle for g (and hence alg) is at most poly

(
input size, log( 1

ε )
)
. J

ESA 2019



27:8 Minimum-Norm Load Balancing

5 Extensions: multi-norm load balancing and simultaneous
approximation

5.1 Multi-norm load balancing
In the multi-norm load-balancing problem, we are given a load-balancing instance(
J,m, {pij}i∈[m],j∈J

)
, multiple monotone, symmetric norms f1, . . . , fk, and budgets

T1, . . . , Tk for these norms respectively. The goal is to find an assignment σ : J → [m]
such that fr( ~loadσ) ≤ Tr for all r ∈ [k]. Our approximation guarantee extends easily to
this problem.

I Theorem 10. Let
(
J,m, {pij}i∈[m],j∈J

)
be a load-balancing instance. Let f1, . . . , fk be

k monotone, symmetric norms, with associated budgets T1, . . . , Tk. Given an ω-first-order
oracle for each norm, for any ε > 0, in poly(input size, k, log(1/ε)) time, one can either
determine that there is no feasible solution to the multi-norm load-balancing problem, or
return an assignment σ : J → [m] such that fr( ~loadσ) ≤ 4(1 + 7ω)(1 + ε)Tr for all r ∈ [k].

The convex-programming relaxation for this problem is a variant of (CP) where there is
no objective function, and constraints (5), (6) are replaced with

fr(~L) ≤ Tr, fr(~PS) ≤ Tr ∀S ⊆ J : |S| = m, ∀r = 1, . . . , k (7)

Let (Multi-CP) denote the resulting feasibility problem: find (x, ~L, ~P ) satisfying (1)–(4), and
(7). As noted earlier, the rounding procedure in Section 3 is oblivious to the underlying norm,
and so our task boils down to finding an (approximately) feasible solution to (Multi-CP).

In order to solve (Multi-CP), as with (CP), it will be convenient to move the nonlinear
constraints to the objective and consider the following reformulation:

min q(x) := max
{

max
r∈[k]

fr(
−−→
L(x))
Tr

, max
r∈[k]

max
S⊆J:|S|=m

f(
−−−→
P (x)S)
Tr

}
s.t. (1), (2). (MNCP)

Observe that finding a feasible solution to (Multi-CP) is equivalent to finding a feasible
solution to (MNCP) with objective value at at most 1. As before, we may assume that the
pijs are integers, and can determine if there is an assignment σ such that ~loadσ = ~0 (which
clearly satisfies (7)). So assume otherwise. We prove the following.

I Theorem 11. Let algr be an ω-first-order oracle for fr for all r ∈ [k], where ω ≤ 1
18 . For

any ε > 0, in poly
(
input size, log( 1

ε )
)
time and using poly

(
input size, log( 1

ε )
)
calls to each

algr oracle, we can determine that either (Multi-CP) is infeasible, or compute x∗ ∈ P such
that q(x∗) ≤ (1 + 7ω)(1 + ε).

Using Theorem 11, for any ε > 0, we can determine in time poly
(
input size, log( 1

ε

)
that

(Multi-CP) is infeasible, or return a fractional assignment x∗ satisfying

fr( ~L(x∗)) ≤ κTr, fr( ~P (x∗)S) ≤ κTr ∀S ⊆ J : |S| = m, ∀r = 1, . . . , k

where κ = (1 + 7ω)(1 + ε). As noted earlier, the rounding procedure in Section 3 is oblivious
to the underlying norm, and so by utilizing this to round x∗, we obtain an assignment σ such
that fr( ~loadσ) ≤ 4κTr for all r ∈ [k]. This yields Theorem 10.

In the rest of this section, we discuss the proof of Theorem 11. If the multi-norm problem
is feasible, we must have Tr ≥ fr(e1) for all r ∈ [k]. We assume in the sequel that Tr is
at least the estimate of fr(e1) returned by algr scaled by (1 + ω), for all r ∈ [k]; if this
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does not hold, then we declare infeasibility. Given this, the proof of Lemma 8 8 shows that
Kr = (1 + ω)

√
m · Tr is an upper bound on the Lipschitz constant of fr, for all r ∈ [k]. We

assume this bound in the sequel. Similar to Claim 5 and Lemma 8, we show that the Lipschitz
constant of q can be bounded in terms of the Krs, and we can obtain a 2ω-first-order oracle
for q using the algr oracles.

I Lemma 12. (i) The Lipschitz constant of q is bounded by K = poly(m,n,maxi,j pij). (ii)
We can obtain a 2ω-first order oracle for q by making O(1) calls to algr for each r ∈ [k].

Proof of Theorem 11. We utilize Lemma 12 in conjunction with Theorem 7. Part (ii) of
Lemma 12 shows how to obtain a 2ω-first-order oracle, alg, for q. So invoking Theorem 7 with
η = ε, and the bound K on the Lipschitz constant of q obtained from part (i) of Lemma 12,
we obtain x ∈ P such that

q(x) ≤ 1 + 2ω
1− 2ω

(
min
x∈P

q(x) + η
)
. (8)

The running time is poly
(
input size, log( 1

ε )
)
(since log(R/V ), logK = poly(input size)), and

this is also a bound on the number of calls to the algr oracles. Using alg, we obtain an
estimate est such that q(x) ≤ est ≤ (1 + 2ω)q(x). If est > (1+2ω)2

1−2ω · (1 + η), then (8) implies
that

(
minx∈P q(x)

)
> 1, and so (Multi-CP) is infeasible. Otherwise, taking x∗ = x, we

obtain that q(x∗) ≤ est ≤ (1+2ω)2

1−2ω · (1 + ε) ≤ (1 + 7ω)(1 + ε) since ω ≤ 1
18 . J

5.2 Simultaneous approximation

Given a load-balancing instance I =
(
J,m, {pij}i∈[m],j∈J

)
, let α∗I be the smallest α such

that there exists an assignment σ∗ satisfying f( ~loadσ∗) ≤ α
(
minσ:J 7→[m] f( ~loadσ)

)
for every

monotone, symmetric norm. That is, α∗I is the best simultaneous approximation factor
achievable on instance I. Instead of seeking absolute bounds on α∗I over a class of instances [2,
4, 11], as discussed in [8], another pertinent problem is to seek instance-wise guarantees:
given an instance I, we want to find a polytime-computable assignment σ such that, for some
factor γ ≥ 1, we have f( ~loadσ) ≤ γα∗I

(
minσ:J 7→[m] f( ~loadσ)

)
for every monotone, symmetric

norm; i.e., the simultaneous approximation factor of σ at most γ times the best simultaneous
approximation factor achievable for I.

Our techniques coupled with insights from [11, 8] yields a 4
(
1 + O(ε)

)
-approximation

to the best simultaneous approximation factor, in time poly
(
input size, (mε )O(1/ε)). To ob-

tain this guarantee, following [11, 8], incurring a (1 + ε)-factor loss, it suffices to obtain
a 4-approximation to the best simultaneous-approximation achievable for Top-`-norms –
Top-`(x) := maxS⊆[m]:|S|=`

∑
i∈S |xi| – for the O(logm) indices ` in

POS :=
{

min{d(1 + ε)se ,m} : s ≥ 0
}
. If we knew the optimal value opt` for each such Top-`

norm, then we can set set a budget T` = αopt` for each ` ∈ POS, and utilize our result for
multi-norm load balancing to do a binary search for α. Importantly, notice that the resulting
feasibility problem (Multi-CP) can now be cast as an linear-programming feasibility problem,
since a budget constraint of the form Top-`(~v) ≤ T` can be modeled using exponentially many
linear constraints that one can separate over. Thus, this would yield a 4(1+ε)-approximation.
To make this idea work, we enumerate all choices for the opt` values in powers of (1 + ε). As
argued in [8], there are at most poly

(
input size, (mε )O(1/ε)) candidates to enumerate over,

and this yields the stated guarantee.

ESA 2019
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I Theorem 13. Given a load-balancing instance I =
(
J,m, {pij}i∈[m],j∈J

)
, let α∗I be the

smallest α such that there is an assignment σ∗ satisfying f( ~loadσ∗) ≤ α
(
minσ:J 7→[m] f( ~loadσ)

)
for every monotone, symmetric norm f . In poly

(
input size, (mε )O(1/ε)) time, we can find

an assignment σ̂ such that we have f( ~load
σ̂
) ≤

(
4 +O(ε)

)
α∗I
(
minσ:J 7→[m] f( ~loadσ)

)
for every

monotone, symmetric norm f .

6 Proofs from Sections 4 and 5

Proof of Claim 5. The bound follows easily from the definition of g. Let x, y ∈ R[m]×J . Let
~L, ~L′ ∈ Rm be the load vectors induced by x, y respectively; let ~PS , ~P ′S , be the job-cost
vectors for the jobs in S induced by x, y respectively. Then, g(y) − g(x) ≤ max

{
f(L′) −

f(L),maxS⊆J:|S|=m f(P ′S) − f(PS)
}
. So g(y) − g(x) ≤ Kf‖L′ − L‖2 or g(y) − g(x) ≤

Kf‖P ′S − PS‖ for some S ⊆ J with |S| = m. Let pmax := maxi,j pij . In the former case, we
have g(y)− g(x) ≤ Kfpmax

∑
i,j |yij − xij | ≤

√
mn ·Kfpmax‖y − x‖2; the same bound also

applies in the latter case. This shows shows that K =
√
mn ·Kfpmax is a bound on the

Lipschitz constant of g. J

The following claim will be useful in proving part 8 of Lemma 8, as also part (ii) of
Lemma 12.

B Claim 14. Let h : RN 7→ R be defined by h(x) := maxr∈[k] hr(x), where hr : RN 7→ R is
convex for all r ∈ [k]. Let algr be an ω-first order oracle for hr for all r ∈ [k] (where ω < 1).

One can obtain a 2ω-first order oracle for h using O(1) calls to alg1, . . . algk.
More generally, suppose that given x ∈ Rn, one can identify I(x) ⊆ [k] such that
h(x) = maxr∈I(x) hr(x). Then, one can compute a 2ω-first-order oracle for h that, on
input x ∈ Rn, makes O(1) calls to algr for all r ∈ I(x).

Proof. We focus on proving part (i); part (ii) follows from a very similar argument. Fix
x ∈ RN . For every r ∈ [k], we call algr to obtain an estimate estr of hr(x). We set the
estimate for h(x) to be est := maxr∈[k] estr. From the properties of estr, it is easy to see that
h(x) ≤ est ≤ (1 + ω)h(x).

Let dr be the ω-subgradient of fr at x returned by algr. Let s ∈ [k] be such that est = ests.
We set µ = ds. We now argue that µ is a 2ω-subgradient of h at x. Consider any y ∈ RN .
We have

µT (y − x) = (y − x)T ds ≤ hs(y)− hs(x) + ωhs(x) ≤ h(y)− 1−ω
1+ω · ests = h(y)− 1−ω

1+ω · est

≤ h(y)− 1−ω
1+ω · h(x) ≤ h(y)− (1− 2ω)h(x).

The first two inequalities follow due to the fact that (ests, ds) was returned by the ω-first order
oracle for hs; the next equality follows from the definition of index s; and the penultimate
inequality follows since est ≥ h(x) as established earlier.

The proof of the more general statement in (ii) is essentially identical: on input x, we
now run algr for all r ∈ I(x); we set est = maxr∈I(x) estr, and d = ds, where s ∈ I(x) is an
index such that est = ests. C

Proof of Lemma 8. For part 8, fix x ∈ R[m]×J . Recall that Pj = Pj(x) :=
∑
i pijxij , Let

S∗ be the set of m jobs with the highest Pj values. Let ~L = ~L(x) and ~PS∗ = ~P (x)S∗ . Then,
g(x) = max

{
f(~L), f(~PS∗)

}
. Observe that alg can be used to obtain an ω-first-order oracle

for both f
( ~L(x)

)
and f

( ~P (x)S∗

)
. Thus, by using Claim 14 (ii), we obtain a 2ω-first-order

oracle for g using O(1) calls to alg.
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We now justify the observation. A (1 +ω)-approximate value oracle is obtained by simply
calling alg to obtain estimates of f(~L) and f(~PS∗). Let dL = (dLi )i∈[m], and dP = (dPj )j∈S∗

be the ω-subgradients of f at ~L at ~PS∗ respectively returned by alg.

For all i ∈ [m], j ∈ J , define βij = pijd
L
i , γij =

{
pijd

P
j if j ∈ S∗;

0 otherwise.

Then, for any y ∈ R[m]×J , we have βT (y − x) =
∑
i,j d

L
i pij(yij − xij) = ( ~L(y) − ~L(x))T dL

showing that β is an ω-subgradient of f
( ~L(·)

)
at x. Similarly, γT (y − x) =

( ~P (y)S∗ −
~P (x)S∗

)T
dP showing that γ is an ω-subgradient of f

( ~P (·)
)
at x.

For part 8, Let σ∗ be an optimal assignment. Since we are assuming that O∗ ≥ 1, we
have loadσ∗(i) ≥ 1 for some i ∈ [m]. Let ei ∈ Rm be the vector with 1 in coordinate i and
0s everywhere else. Then, O∗ ≥ f(e1). Let lb be the estimate of f(e1) obtained by alg
scaled down by (1 + ω). So we have f(e1)/(1 + ω) ≤ lb ≤ O∗. Consider any x, y ∈ Rm.
We have y = x +

∑m
i=1(yi − xi)ei, so by the triangle inequality and symmetry, we have

|f(y) − f(x)| ≤
∑m
i=1 |yi − xi|f(ei) Therefore, |f(y) − f(x)| ≤ (1 + ω)lb

∑m
i=1 |yi − xi| ≤

(1 + ω)
√
m · lb · ‖y − x‖. So we can set Kf = (1 + ω)

√
m · lb. J

Proof of Lemma 12. Part (i) follows by applying Claim 5 to each norm fr, and since the
Lipschitz constant of the maximum of a collection of functions is bounded by the maximum
of the Lipschitz constants of the functions in the collection. Let pmax = maxi,j pij . By
Claim 5, for each r ∈ [k], and S ⊆ J with |S| = m, both fr( ~L(x))/Tr and fr( ~P (x)S)/Tr have
Lipschitz constant at most

√
mn · pmax ·Kr/Tr ≤ (1 + ω)m

√
npmax. Hence, the Lipschitz

constant of q is at most K = (1 + ω)m
√
npmax.

For part (ii), we mimic the proof of part 8 of Lemma 8. Fix x ∈ R[m]×J . Let S∗ be the
set of m jobs with the highest Pj(x) values, where Pj(x) :=

∑
i pijxij . Let ~L = ~L(x) and

~PS∗ = ~P (x)S∗ . Then,

q(x) = max
{

max
r∈[k]

fr(~L)/Tr, max
r∈[k]

fr(~PS∗)/Tr
}
.

As in the proof of Lemma 8 8, for each r ∈ [k], we can use algr to obtain an ω-first-order oracle
for fr

( ~L(x)
)
/Tr and fr

( ~P (x)S∗

)
/Tr. Thus, by using Claim 14 (ii), we obtain a 2ω-first-order

oracle for q using O(1) calls to algr, for each r ∈ [k]. J
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