255,086 research outputs found

    A Novel Ontology and Machine Learning Driven Hybrid Clinical Decision Support Framework for Cardiovascular Preventative Care

    Get PDF
    Clinical risk assessment of chronic illnesses is a challenging and complex task which requires the utilisation of standardised clinical practice guidelines and documentation procedures in order to ensure consistent and efficient patient care. Conventional cardiovascular decision support systems have significant limitations, which include the inflexibility to deal with complex clinical processes, hard-wired rigid architectures based on branching logic and the inability to deal with legacy patient data without significant software engineering work. In light of these challenges, we are proposing a novel ontology and machine learning-driven hybrid clinical decision support framework for cardiovascular preventative care. An ontology-inspired approach provides a foundation for information collection, knowledge acquisition and decision support capabilities and aims to develop context sensitive decision support solutions based on ontology engineering principles. The proposed framework incorporates an ontology-driven clinical risk assessment and recommendation system (ODCRARS) and a Machine Learning Driven Prognostic System (MLDPS), integrated as a complete system to provide a cardiovascular preventative care solution. The proposed clinical decision support framework has been developed under the close supervision of clinical domain experts from both UK and US hospitals and is capable of handling multiple cardiovascular diseases. The proposed framework comprises of two novel key components: (1) ODCRARS (2) MLDPS. The ODCRARS is developed under the close supervision of consultant cardiologists Professor Calum MacRae from Harvard Medical School and Professor Stephen Leslie from Raigmore Hospital in Inverness, UK. The ODCRARS comprises of various components, which include: (a) Ontology-driven intelligent context-aware information collection for conducting patient interviews which are driven through a novel clinical questionnaire ontology. (b) A patient semantic profile, is generated using patient medical records which are collated during patient interviews (conducted through an ontology-driven context aware adaptive information collection component). The semantic transformation of patients’ medical data is carried out through a novel patient semantic profile ontology in order to give patient data an intrinsic meaning and alleviate interoperability issues with third party healthcare systems. (c) Ontology driven clinical decision support comprises of a recommendation ontology and a NICE/Expert driven clinical rules engine. The recommendation ontology is developed using clinical rules provided by the consultant cardiologist from the US hospital. The recommendation ontology utilises the patient semantic profile for lab tests and medication recommendation. A clinical rules engine is developed to implement a cardiac risk assessment mechanism for various cardiovascular conditions. The clinical rules engine is also utilised to control the patient flow within the integrated cardiovascular preventative care solution. The machine learning-driven prognostic system is developed in an iterative manner using state of the art feature selection and machine learning techniques. A prognostic model development process is exploited for the development of MLDPS based on clinical case studies in the cardiovascular domain. An additional clinical case study in the breast cancer domain is also carried out for the development and validation purposes. The prognostic model development process is general enough to handle a variety of healthcare datasets which will enable researchers to develop cost effective and evidence based clinical decision support systems. The proposed clinical decision support framework also provides a learning mechanism based on machine learning techniques. Learning mechanism is provided through exchange of patient data amongst the MLDPS and the ODCRARS. The machine learning-driven prognostic system is validated using Raigmore Hospital's RACPC, heart disease and breast cancer clinical case studies

    Personal recommendations in requirements engineering : the OpenReq approach

    Get PDF
    [Context & motivation] Requirements Engineering (RE) is considered as one of the most critical phases in software development but still many challenges remain open. [Problem] There is a growing trend of applying recommender systems to solve open RE challenges like requirements and stakeholder discovery; however, the existent proposals focus on specific RE tasks and do not give a general coverage for the RE process. [Principal ideas/results] In this research preview, we present the OpenReq approach to the development of intelligent recommendation and decision technologies that support different phases of RE in software projects. Specifically, we present the OpenReq part for personal recommendations for stakeholders. [Contribution] OpenReq aim is to improve and speed up RE processes, especially in large and distributed systemsPeer ReviewedPostprint (author's final draft

    Approaches to the use of sensor data to improve classroom experience

    Get PDF
    quipping classrooms with inexpensive sensors can enable students and teachers with the opportunity to interact with the classroom in a smart way. In this paper an approach to acquiring contextual data from a classroom environment, using inexpensive sensors, is presented. We present our approach to formalising the usage data. Further we demonstrate how the data was used to model specific room usage situation as cases in a Case-based reasoning (CBR) system. The room usage data was than integrated in a room recommendations system, reasoning on the formalised usage data. We also detail on our on-going work to integrating the systems presented in this paper into our Smart University vision

    A hierarchy of SPI activities for software SMEs: results from ISO/IEC 12207-based SPI assessments

    Get PDF
    In an assessment of software process improvement (SPI) in 15 software small- and –medium-sized enterprises (software SMEs), we applied the broad spectrum of software specific and system context processes in ISO/IEC 12207 to the task of examining SPI in practice. Using the data collected in the study, we developed a four-tiered pyramidal hierarchy of SPI for software SMEs, with processes in the higher tiers undergoing SPI in more companies than processes on lower level tiers. The development of the hierarchy of SPI activities for software SMEs can facilitate future evolutions of process maturity reference frameworks, such as ISO/IEC 15504, in better supporting software development in software SMEs. Furthermore, the findings extend our body of knowledge concerning the practice of SPI in software SMEs, a large and vital sector of the software development community that has largely avoided the implementation of established process maturity and software quality management standards

    Design and Implementation of S-MARKS: A Secure Middleware for Pervasive Computing Applications

    Get PDF
    As portable devices have become a part of our everyday life, more people are unknowingly participating in a pervasive computing environment. People engage with not a single device for a specific purpose but many devices interacting with each other in the course of ordinary activity. With such prevalence of pervasive technology, the interaction between portable devices needs to be continuous and imperceptible to device users. Pervasive computing requires a small, scalable and robust network which relies heavily on the middleware to resolve communication and security issues. In this paper, we present the design and implementation of S-MARKS which incorporates device validation, resource discovery and a privacy module
    • 

    corecore