39 research outputs found

    An approach to computing downward closures

    Full text link
    The downward closure of a word language is the set of all (not necessarily contiguous) subwords of its members. It is well-known that the downward closure of any language is regular. While the downward closure appears to be a powerful abstraction, algorithms for computing a finite automaton for the downward closure of a given language have been established only for few language classes. This work presents a simple general method for computing downward closures. For language classes that are closed under rational transductions, it is shown that the computation of downward closures can be reduced to checking a certain unboundedness property. This result is used to prove that downward closures are computable for (i) every language class with effectively semilinear Parikh images that are closed under rational transductions, (ii) matrix languages, and (iii) indexed languages (equivalently, languages accepted by higher-order pushdown automata of order 2).Comment: Full version of contribution to ICALP 2015. Comments welcom

    Unboundedness Problems for Machines with Reversal-Bounded Counters

    Get PDF
    We consider a general class of decision problems concerning formal languages, called (one-dimensional) unboundedness predicates, for automata that feature reversal-bounded counters (RBCA). We show that each problem in this class reduces-non-deterministically in polynomial time to the same problem for just nite automata. We also show an analogous reduction for automata that have access to both a push- down stack and reversal-bounded counters (PRBCA). This allows us to answer several open questions: For example, we settle the complexity of deciding whether a given (P)RBCA language L is bounded, meaning whether there exist words w1, . . . , wn with L ⊆ w1∗ · · · wn∗ . For PRBCA, even decidability was open. Our methods also show that there is no language of a (P)RBCA of intermediate growth. Part of our proof is likely of independent interest: We show that one can translate an RBCA into a machine with Z-counters in logarithmic space

    The Diagonal Problem for Higher-Order Recursion Schemes is Decidable

    Full text link
    A non-deterministic recursion scheme recognizes a language of finite trees. This very expressive model can simulate, among others, higher-order pushdown automata with collapse. We show decidability of the diagonal problem for schemes. This result has several interesting consequences. In particular, it gives an algorithm that computes the downward closure of languages of words recognized by schemes. In turn, this has immediate application to separability problems and reachability analysis of concurrent systems.Comment: technical report; to appear in LICS'1

    On Word and Frontier Languages of Unsafe Higher-Order Grammars

    Get PDF
    Higher-order grammars are an extension of regular and context-free grammars, where nonterminals may take parameters. They have been extensively studied in 1980\u27s, and restudied recently in the context of model checking and program verification. We show that the class of unsafe order-(n+1) word languages coincides with the class of frontier languages of unsafe order-n tree languages. We use intersection types for transforming an order-(n+1) word grammar to a corresponding order-n tree grammar. The result has been proved for safe languages by Damm in 1982, but it has been open for unsafe languages, to our knowledge. Various known results on higher-order grammars can be obtained as almost immediate corollaries of our result

    A Characterization for Decidable Separability by Piecewise Testable Languages

    Full text link
    The separability problem for word languages of a class C\mathcal{C} by languages of a class S\mathcal{S} asks, for two given languages II and EE from C\mathcal{C}, whether there exists a language SS from S\mathcal{S} that includes II and excludes EE, that is, I⊆SI \subseteq S and S∩E=∅S\cap E = \emptyset. In this work, we assume some mild closure properties for C\mathcal{C} and study for which such classes separability by a piecewise testable language (PTL) is decidable. We characterize these classes in terms of decidability of (two variants of) an unboundedness problem. From this, we deduce that separability by PTL is decidable for a number of language classes, such as the context-free languages and languages of labeled vector addition systems. Furthermore, it follows that separability by PTL is decidable if and only if one can compute for any language of the class its downward closure wrt. the scattered substring ordering (i.e., if the set of scattered substrings of any language of the class is effectively regular). The obtained decidability results contrast some undecidability results. In fact, for all (non-regular) language classes that we present as examples with decidable separability, it is undecidable whether a given language is a PTL itself. Our characterization involves a result of independent interest, which states that for any kind of languages II and EE, non-separability by PTL is equivalent to the existence of common patterns in II and EE

    Deciding Piecewise Testable Separability for Regular Tree Languages

    Get PDF
    The piecewise testable separability problem asks, given two input languages, whether there exists a piecewise testable language that contains the first input language and is disjoint from the second. We prove a general characterisation of piecewise testable separability on languages in a well-quasiorder, in terms of ideals of the ordering. This subsumes the known characterisations in the case of finite words. In the case of finite ranked trees ordered by homeomorphic embedding, we show using effective representations for tree ideals that it entails the decidability of piecewise testable separability when the input languages are regular. A final byproduct is a new proof of the decidability of whether an input regular language of ranked trees is piecewise testable, which was first shown in the unranked case by Bojanczyk, Segoufin, and Straubing [Log. Meth. in Comput. Sci., 8(3:26), 2012]

    The Complexity of Downward Closure Comparisons

    Get PDF
    The downward closure of a language is the set of all (not necessarily contiguous) subwords of its members. It is well-known that the downward closure of every language is regular. Moreover, recent results show that downward closures are computable for quite powerful system models. One advantage of abstracting a language by its downward closure is that then equivalence and inclusion become decidable. In this work, we study the complexity of these two problems. More precisely, we consider the following decision problems: Given languages K and L from classes C and D, respectively, does the downward closure of K include (equal) that of L? These problems are investigated for finite automata, one-counter automata, context-free grammars, and reversal-bounded counter automata. For each combination, we prove a completeness result either for fixed or for arbitrary alphabets. Moreover, for Petri net languages, we show that both problems are Ackermann-hard and for higher-order pushdown automata of order k, we prove hardness for complements of nondeterministic k-fold exponential time

    Regular Separability and Intersection Emptiness Are Independent Problems

    Get PDF
    The problem of regular separability asks, given two languages K and L, whether there exists a regular language S that includes K and is disjoint from L. This problem becomes interesting when the input languages K and L are drawn from language classes beyond the regular languages. For such classes, a mild and useful assumption is that they are full trios, i.e. closed under rational transductions. All the results on regular separability for full trios obtained so far exhibited a noteworthy correspondence with the intersection emptiness problem: In each case, regular separability is decidable if and only if intersection emptiness is decidable. This raises the question whether for full trios, regular separability can be reduced to intersection emptiness or vice-versa. We present counterexamples showing that neither of the two problems can be reduced to the other. More specifically, we describe full trios C_1, D_1, C_2, D_2 such that (i) intersection emptiness is decidable for C_1 and D_1, but regular separability is undecidable for C_1 and D_1 and (ii) regular separability is decidable for C_2 and D_2, but intersection emptiness is undecidable for C_2 and D_2

    The Complexity of the Diagonal Problem for Recursion Schemes

    Get PDF
    We consider nondeterministic higher-order recursion schemes as recognizers of languages of finite words or finite trees. We establish the complexity of the diagonal problem for schemes: given a set of letters A and a scheme G, is it the case that for every number n the scheme accepts a word (a tree) in which every letter from A appears at least n times. We prove that this problem is (m-1)-EXPTIME-complete for word-recognizing schemes of order m, and m-EXPTIME-complete for tree-recognizing schemes of order m
    corecore