22,833 research outputs found

    Intelligent feature based resource selection and process planning

    Get PDF
    Lien vers la version Ă©diteur: https://www.inderscience.com/books/index.php?action=record&rec_id=755&chapNum=3&journalID=1022&year=2010This paper presents an intelligent knowledge-based integrated manufacturing system using the STEP feature-based modeling and rule based intelligent techniques to generate suitable process plans for prismatic parts. The system carries out several stages of process planning, such as identification of the pairs of feature/tool that satisfy the required conditions, generation of the possible process plans from identified tools/machine pairs, and selection of the most interesting process plans considering the economical or timing indicators. The suitable processes plans are selected according to the acceptable range of quality, time and cost factors. Each process plan is represented in the tree format by the information items corresponding to their CNC Machine, required tools characteristics, times (machining, setup, preparatory) and the required machining sequences. The process simulation module is provided to demonstrate the different sequences of machining. After selection of suitable process plan, the G-code language used by CNC machines is generated automatically. This approach is validated through a case

    Developing Mathematics Enrichment Workshops for Middle School Students: Philosophy and Sample Workshops

    Get PDF
    This paper describes our approach to organizing enrichment activities using advanced mathematics topics for diverse audiences of middle school students. We discuss our philosophy and approaches for the structure of these workshops, and then provide sample schedules and resource materials. The workshops cover activities on the following topics: Graphing Calculators; The Chaos Game; Statistical Sampling; CT Scans–the reconstruction problem; The Platonic and Archimedean solids; The Shape of Space; Symmetry; The Binary Number System and the game of NIM; Graph Theory: Proof by Counterexample

    An overview of decision table literature 1982-1995.

    Get PDF
    This report gives an overview of the literature on decision tables over the past 15 years. As much as possible, for each reference, an author supplied abstract, a number of keywords and a classification are provided. In some cases own comments are added. The purpose of these comments is to show where, how and why decision tables are used. The literature is classified according to application area, theoretical versus practical character, year of publication, country or origin (not necessarily country of publication) and the language of the document. After a description of the scope of the interview, classification results and the classification by topic are presented. The main body of the paper is the ordered list of publications with abstract, classification and comments.

    A hybrid and integrated approach to evaluate and prevent disasters

    Get PDF

    Joint Image Reconstruction and Segmentation Using the Potts Model

    Full text link
    We propose a new algorithmic approach to the non-smooth and non-convex Potts problem (also called piecewise-constant Mumford-Shah problem) for inverse imaging problems. We derive a suitable splitting into specific subproblems that can all be solved efficiently. Our method does not require a priori knowledge on the gray levels nor on the number of segments of the reconstruction. Further, it avoids anisotropic artifacts such as geometric staircasing. We demonstrate the suitability of our method for joint image reconstruction and segmentation. We focus on Radon data, where we in particular consider limited data situations. For instance, our method is able to recover all segments of the Shepp-Logan phantom from 77 angular views only. We illustrate the practical applicability on a real PET dataset. As further applications, we consider spherical Radon data as well as blurred data

    Histopathological image analysis : a review

    Get PDF
    Over the past decade, dramatic increases in computational power and improvement in image analysis algorithms have allowed the development of powerful computer-assisted analytical approaches to radiological data. With the recent advent of whole slide digital scanners, tissue histopathology slides can now be digitized and stored in digital image form. Consequently, digitized tissue histopathology has now become amenable to the application of computerized image analysis and machine learning techniques. Analogous to the role of computer-assisted diagnosis (CAD) algorithms in medical imaging to complement the opinion of a radiologist, CAD algorithms have begun to be developed for disease detection, diagnosis, and prognosis prediction to complement the opinion of the pathologist. In this paper, we review the recent state of the art CAD technology for digitized histopathology. This paper also briefly describes the development and application of novel image analysis technology for a few specific histopathology related problems being pursued in the United States and Europe

    A New Approach for Generating Facility Layouts Using an Algorithmic Approach

    Get PDF
    In this paper a new approach is described to automatically create layouts for material flow systems. The current research in progress aiming at adopting the methods and algorithms of the Electronic Design Automation to be used in logistics planning is presented. These methods are already applied to create microchips being multiple times more complex than material flow systems while following the same goal: Functional units have to be placed on a predefined area and are linked by connections weighted differently. This basic requirement can be applied to microchip designs as well as material flow systems. The common condition is to create the setup with the smallest connection length possible. The results are compared to a currently applied computerized method to calculate facility layouts. The overall result of the introduced method is nearly equal to the traditional reference method to create a computerized material flow layout. However, while the new algorithm does all calculations automatically, the traditional method requires manual finishing to achieve a comparable result. This article thereby shows the potential of the research in progress toward the goal to support logistics planning with a new generation of automated software tools

    Decision-making and problem-solving methods in automation technology

    Get PDF
    The state of the art in the automation of decision making and problem solving is reviewed. The information upon which the report is based was derived from literature searches, visits to university and government laboratories performing basic research in the area, and a 1980 Langley Research Center sponsored conferences on the subject. It is the contention of the authors that the technology in this area is being generated by research primarily in the three disciplines of Artificial Intelligence, Control Theory, and Operations Research. Under the assumption that the state of the art in decision making and problem solving is reflected in the problems being solved, specific problems and methods of their solution are often discussed to elucidate particular aspects of the subject. Synopses of the following major topic areas comprise most of the report: (1) detection and recognition; (2) planning; and scheduling; (3) learning; (4) theorem proving; (5) distributed systems; (6) knowledge bases; (7) search; (8) heuristics; and (9) evolutionary programming
    • 

    corecore