16,563 research outputs found

    An integrated reusable remote laboratory to complement electronics teaching

    Get PDF
    The great majority of the courses on science and technology areas where lab work is a fundamental part of the apprenticeship was not until recently available to be taught at distance. This reality is changing with the dissemination of remote laboratories. Supported by resources based on new information and communication technologies, it is now possible to remotely control a wide variety of real laboratories. However, most of them are designed specifically to this purpose, are inflexible and only on its functionality they resemble the real ones. In this paper, an alternative remote lab infrastructure devoted to the study of electronics is presented. Its main characteristics are, from a teacher's perspective, reusability and simplicity of use, and from a students' point of view, an exact replication of the real lab, enabling them to complement or finish at home the work started at class. The remote laboratory is integrated in the Learning Management System in use at the school, and therefore, may be combined with other web experiments and e-learning strategies, while safeguarding security access issues

    CESEC Chair – Training Embedded System Architects for the Critical Systems Domain

    Get PDF
    Increasing complexity and interactions across scientific and tech- nological domains in the engineering of critical systems calls for new pedagogical approach. In this paper, we introduce the CESEC teaching chair. This chair aims at supporting new integrative ap- proach for the initial training of engineer and master curriculum to three engineering school in Toulouse: ISAE, INSA Toulouse and INP ENSEEIHT. It is supported by the EADS Corporate Foundation. In this paper, we highlight the rationale for this chair: need for sys- tem architect with strong foundations on technical domains appli- cable to the aerospace industry. We then introduce the ideal profile for this architect and the various pedagogical approaches imple- mented to reach this objective

    Making training more cognitively effective: making videos interactive

    No full text
    The cost of health and safety (H&S) failures to the UK industry is currently estimated at up to ÂŁ6.5 billion per annum, with the construction sector suffering unacceptably high levels of work-related incidents. Better H&S education across all skill levels in the industry is seen as an integral part of any solution. Traditional lecture-based courses often fail to recreate the dynamic realities of managing H&S on site and therefore do not sufficiently create deeper cognitive learning (which results in remembering and using what was learned). The use of videos is a move forward, but passively observing a video is not cognitively engaging and challenging, and therefore learning is not as effective as it can be. This paper describes the development of an interactive video in which learners take an active role. While observing the video, they are required to engage, participate, respond and be actively involved. The potential for this approach to be used in conjunction with more traditional approaches to H&S was explored using a group of 2nd-year undergraduate civil engineering students. The formative results suggested that the learning experience could be enhanced using interactive videos. Nevertheless, most of the learners believed that a blended approach would be most effective

    Enabling remote design and troubleshooting experiments using the ilab shared architecture

    Get PDF
    12th Biennial International Conference on Engineering, Construction, and Operations in Challenging Environments; and Fourth NASA/ARO/ASCE Workshop on Granular Materials in Lunar and Martian Exploration Honolulu, Hawaii, United States March 14-17, 2010The MIT iLab Project is dedicated to the goal of increasing laboratory experimentation opportunities for engineering students worldwide. Since its inception in 1998, the project has furthered this goal through the development of individual remote laboratories, or iLabs, as well as a distributed software infrastructure designed to streamline the implementation and sharing of remote laboratories. iLabs are designed to complement traditional, hands-on laboratories by providing practical educational experiences where they would not otherwise be available. Such remote labs, developed and hosted by MIT and other institutions within the iLab Consortium, have been successfully used by instructors at schools across the educational spectrum and around the world. While certainly valuable, many of the original experiments available through the iLab platform provide a limited experience in that they are observational in nature. They only provide students the ability to study the behavior of a pre-defined system under test. Such labs have proven to be valuable additions to engineering curricula, but do not have the flexibility that is inherent in a traditional laboratory experience. To address this, the MIT iLab Project has begun focusing on the development of iLabs that provide students with the ability to design or troubleshoot experimental systems. Through two particular remote labs, focusing on electronic control system analysis and basic electronics test and measurement respectively, the project is designing remote labs that provide a more flexible learning experience for students and are more attractive to instructors in a broad set of disciplines.National Science Foundation (U.S.) (award 0702735)Singapore-MIT Alliance for Research and Technology CenterMicrosoft CorporationCarnegie Corporation of New YorkMaricopa County Community College District. Maricopa Advanced Technology Education Cente

    Internationalisation of Innovation: Why Chip Design Moving to Asia

    Get PDF
    This paper will appear in International Journal of Innovation Management, special issue in honor of Keith Pavitt, (Peter Augsdoerfer, Jonathan Sapsed, and James Utterback, guest editors), forthcoming. Among Keith Pavitt's many contributions to the study of innovation is the proposition that physical proximity is advantageous for innovative activities that involve highly complex technological knowledge But chip design, a process that creates the greatest value in the electronics industry and that requires highly complex knowledge, is experiencing a massive dispersion to leading Asian electronics exporting countries. To explain why chip design is moving to Asia, the paper draws on interviews with 60 companies and 15 research institutions that are doing leading-edge chip design in Asia. I demonstrate that "pull" and "policy" factors explain what attracts design to particular locations. But to get to the root causes that shift the balance in favor of geographical decentralization, I examine "push" factors, i.e. changes in design methodology ("system-on-chip design") and organization ("vertical specialization" within global design networks). The resultant increase in knowledge mobility explains why chip design - that, in Pavitt's framework is not supposed to move - is moving from the traditional centers to a few new specialized design clusters in Asia. A completely revised and updated version has been published as: " Complexity and Internationalisation of Innovation: Why is Chip Design Moving to Asia?," in International Journal of Innovation Management, special issue in honour of Keith Pavitt, Vol. 9,1: 47-73.

    Innovative and effective methods of learning other languages and their benefits

    Get PDF
    [Abstract]: Human beings' ability to communicate in mother tongue can be easily taken for granted until a situation arises when one uses another language. How should people go about acquiring the necessary skills for learning a new language, in this situation? Can learning a new language complement modern tertiary courses such as Business? This paper discusses why and how human beings learn a new language. It presents innovative methods of learning a new language using the latest technologies and teaching/learning ideas and approaches. The use of emerging technologies such as immersive Virtual Reality is discussed. A number of multimedia language learning environments, which encourage creativity and right brain functions are presented and analyzed. The author draws on his own experience of learning several languages, which includes various branches of the Indo-European group

    Integration of mathematics teaching with learning objects in classical and professional high school education

    Get PDF
    This article presents results of a research aimed at creating didactic material for the mathematics teaching-learning process in the high school and professional-technical education, which was developed within the period of a professional master's program. This research is the result of a cooperative work involving two study and research groups linked to both the respective master's program and institutions of integrated technical and high school education. All products were from masters' degree students and professors in the master’s degree program, who work in institutions of basic and professional education. Two products are highlighted: a "Repository of Learning Objects for Secondary and Professional Education (ROAMEP)" and a book (in press), which presents the productions and studies in the areas of mathematics and professional education. The Learning Objects (LOs) address most of the mathematics content in high school education and mathematics applications in professional technical courses. The LOs were created in the digital format, and some of them make the use of the dynamic geometry software whereas others involve activities without the use of digital technologies. In order to integrate mathematics education and professional education, the activities for technical courses address knowledge on technology including electricity, mechanics, and chemistry, involving questions of mathematical models and introduction to differential and integral calculus in addition to the knowledge required for secondary education
    • …
    corecore