251 research outputs found

    A computational model for real-time calculation of electric field due to transcranial magnetic stimulation in clinics

    Get PDF
    The aim of this paper is to propose an approach for an accurate and fast (real-time) computation of the electric field induced inside the whole brain volume during a transcranial magnetic stimulation (TMS) procedure. The numerical solution implements the admittance method for a discretized realistic brain model derived from Magnetic Resonance Imaging (MRI). Results are in a good agreement with those obtained using commercial codes and require much less computational time. An integration of the developed codewith neuronavigation toolswill permit real-time evaluation of the stimulated brain regions during the TMSdelivery, thus improving the efficacy of clinical applications

    Patient semi-specific computational modeling of electromagnetic stimulation applied to neuroprotective treatments in acute ischemic stroke

    Get PDF
    Neuroprotective effects of pulsed electromagnetic fields (PEMFs) have been demonstrated both in vivo and in vitro. Moreover, preliminary clinical studies have been conducted and suggested PEMFs as a possible alternative therapy to treat acute ischemic stroke. In this work, we show that it’s possible to build-up a patient semi-specific head model, where the 3D reconstruction of the ischemic lesion of the patient under treatment is inserted in the head of the human body model “Duke” (v.1.0, Zurich MedTech AG). The semi-specific model will be used in the randomized, placebo-controlled, double-blind study currently ongoing. Three patients were modelled and simulated, and results showed that each ischemic lesion experiences a magnetic flux density field comparable to the one for which biological effects have been attested. Such a kind of dosimetric analysis reveals a reliable tool to assess the correlation between levels of exposure and the beneficial effect. Thus, once the on-going double blind study is complete it will prove if PEMFs treatment triggers a clinical effect, and we will then be able to characterize a dose-response curve with the methodology arranged in this study

    Occupational exposure to electromagnetic fields: risk assessment of operators performing Transcranial Magnetic Stimulation (TMS) treatments

    Get PDF
    The assessment of the risk from occupational exposure to electromagnetic fields (EMF) has attracted the attention of those involved in safety in the workplace, in particular after the updating of European legislation, with the publication for EMFs, of Directive 2013/35/EU1 of the European Parliament and of the Council, which made the risk assessment mandatory for this type of physical agents. The issue is made even more relevant by the proliferation of industrial and health applications using EMF even of considerable intensity. However, the rapid technological development has not always been accompanied by adequate growth in the culture of prevention and safety. Many devices expose both operators and persons of the general public to significant risks, but often, these risks are not adequately reported by the manufacturer, nor mentioned in the instruction manual, as would be expressly required by the harmonized standards. In this general framework is placed this Ph.D. research project, whose aim is to analyze possible conditions of risk in the workplace, considering only the environment where the EMF sources potentially expose the operator to risk. The research project involves a joint collaboration between two Institutions: the National Institute for Insurance against Accidents at Work - INAIL and of course Sapienza University of Rome. The project is developed in a multidisciplinary manner, providing experimental and numerical investigations to achieve the required goals, also considering the literature review and comparison for a more realistic analysis of the risk, in terms of human exposure to EMF. The work is based on a multiphysics approach to obtain a complete evaluation of the risk in the workplace, with the prospective to improve the current approach in the assessment of the risk and eventually suggest some indications to the operator for better use of the device under test. Therefore, the starting point has been a review of the workplaces to identify any gaps and critical issues in relation to the risk assessment and therefore for which it is considered necessary to deepen the protectionist issues. A literature analysis of the state of the art on the risk in the workplace is first carried out. This has been followed by numerical and accurate modeling of the device under test as well as the workers in a real reproduced work condition of exposure. Of paramount importance is the understanding of all the parameters that can affect the distribution of the induced EM quantities, which are essential for the risk assessment and the verification of compliance with the regulations system. To do this, it was necessary to study human exposure in-depth, also using different human body models available for dosimetric analysis on dedicated software. All the research has traveled on two parallel tracks, on the one hand, the need to fill the scientific gaps in the research area of exposure assessment of workers and on the other one to take into account the regulatory aspects, essential for a correct evaluation of professional exposure. Therefore, as a last step of the overall work, a possible new protocol of risk assessment analysis is proposed to move forward on the improvement of safety and security in the workplace

    Brain cortical stimulation thresholds to different magnetic field sources exposures at intermediate frequencies

    Get PDF
    Permissible field strengths in the international guidelines/standard for human protection are derived from peripheral nerve system stimulation at the intermediate frequencies where electrostimulation (attributable to axon activation) is more dominant than thermal effect. Recently, multiscale computation has been used to investigate neuron stimulation thresholds by incorporating individual neurons into realistic head models. However, the consistency of excitation models and permissible levels to specific target tissues (central nervous system) needs to be clarified. This article aims to investigate brain cortical stimulation thresholds using a multiscale computational approach for different scenarios of magnetic field exposures. The magnetic exposures include transcranial magnetic stimulation, uniform exposure, and wireless power transfer systems. Our results confirmed the consistency of the multiscale computations of the cortical thresholds between two independent groups for electromagnetic exposure of transcranial magnetic stimulation (thresholds in the range of motor cortex activation). We also quantified the conservativeness of permissible field strengths of international guidelines/standards at intermediate frequencies. Finally, with the multiscale approach, we confirmed that 10 000 kW of transmitting power of wireless power transfer (WPT) in an electric vehicle charging system may not induce an adverse effect for cortical activation

    Brain and Human Body Modeling

    Get PDF
    This open access book describes modern applications of computational human modeling with specific emphasis in the areas of neurology and neuroelectromagnetics, depression and cancer treatments, radio-frequency studies and wireless communications. Special consideration is also given to the use of human modeling to the computational assessment of relevant regulatory and safety requirements. Readers working on applications that may expose human subjects to electromagnetic radiation will benefit from this book’s coverage of the latest developments in computational modelling and human phantom development to assess a given technology’s safety and efficacy in a timely manner. Describes construction and application of computational human models including anatomically detailed and subject specific models; Explains new practices in computational human modeling for neuroelectromagnetics, electromagnetic safety, and exposure evaluations; Includes a survey of modern applications for which computational human models are critical; Describes cellular-level interactions between the human body and electromagnetic fields
    • …
    corecore