5,069 research outputs found

    Leveraging and Fusing Civil and Military Sensors to support Disaster Relief Operations in Smart Environments

    Get PDF
    Natural disasters occur unpredictably and can range in severity from something locally manageable to large scale events that require external intervention. In particular, when large scale disasters occur, they can cause widespread damage and overwhelm the ability of local governments and authorities to respond. In such situations, Civil-Military Cooperation (CIMIC) is essential for a rapid and robust Humanitarian Assistance and Disaster Relief (HADR) operation. These type of operations bring to bear the Command and Control (C2) and Logistics capabilities of the military to rapidly deploy assets to help with the disaster relief activities. Smart Cities and Smart Environments, embedded with IoT, introduce multiple sensing modalities that typically provide wide coverage over the deployed area. Given that the military does not own or control these assets, they are sometimes referred to as gray assets, which are not as trustworthy as blue assets, owned by the military. However, leveraging these gray assets can significantly improve the ability for the military to quickly obtain Situational Awareness (SA) about the disaster and optimize the planning of rescue operations and allocation of resources to achieve the best possible effects. Fusing the information from the civilian IoT sensors with the custom military sensors could help validate and improve trust in the information from the gray assets. The focus of this paper is to further examine this challenge of achieving Civil-Military cooperation for HADR operations by leveraging and fusing information from gray and blue assets

    Improvement of DHRA-DMDC Physical Access Software DBIDS Using Cloud Computing Technology: a Case Study

    Get PDF
    The U.S government has created and been executing an Identity and Management (IdM) vision to support a global, robust, trusted and interoperable identity management capability that provides the ability to correctly identify individuals and non-person entities in support of DoD mission operations. Many Directives and Instructions have been issued to standardize the process to design, re-designed new and old systems with latest available technologies to meet the visions requirements. In this thesis we introduce a cloud-based architecture for the Defense Biometric Identification System (DBIDS), along with a set of DBIDS Cloud Services that supports the proposed architecture. This cloud-based architecture will move DBIDS in the right direction to meet Dod IdM visions and goals by decoupling current DBIDS functions into DBIDS core services to create interoperability and flexibility to expand future DBIDS with new requirements. The thesis will show its readers how DBIDS Cloud Services will help Defense Manpower Data Center (DMDC) easily expanding DBIDS functionalities such as connecting to other DMDC services or federated services for vetting purposes. This thesis will also serve as a recommendation of a blue-print for DBIDS architecture to support new generation of DBIDS application. This is a step closer in moving DMDC Identity Enterprise Solution toward DoD IdM realizing vision and goals. The thesis also includes a discussion of how to utilize virtualized DBIDS workstations to address software-deployment and maintenance issues to resolve configuration and deployment issues which have been costly problems for DMDC over the years.http://archive.org/details/improvementofdhr109457379Civilian, Department of Defens

    Federation of Cyber Ranges

    Get PDF
    Küberkaitse võimekuse aluselemendiks on kõrgete oskustega ja kokku treeninud spetsialistid. Tehnikute, operaatorite ja otsustajate teadlikkust ja oskusi saab treenida läbi rahvusvaheliste õppuste. On mõeldamatu, et kaitse ja rünnakute harjutamiseks kasutatakse toimivat reaalajalist organisatsiooni IT-süsteemi. Päriseluliste süsteemide simuleerimiseks on võimalik kasutada küberharjutusväljakuid.NATO ja Euroopa Liidu liikmesriikides on mitmed juba toimivad ja käimasolevad arendusprojektid uute küberharjutusväljakute loomiseks. Et olemasolevast ressurssi täies mahus kasutada, tuleks kõik sellised harjutusväljakud rahvusvaheliste õppuste tarbeks ühendada. Ühenduvus on võimalik saavutada alles pärast kokkuleppeid, tehnoloogiate ja erinevate harjutusväljakute kitsenduste arvestamist.Antud lõputöö vaatleb kahte küberharjutusväljakut ja uurib võimalusi, kuidas on võimalik rahvuslike harjutusväljakute ressursse jagada ja luua ühendatud testide ja õppuste keskkond rahvusvahelisteks küberkaitseõppusteks. Lõputöö annab soovitusi informatsiooni voogudest, testkontseptsioonidest ja eeldustest, kuidas saavutada ühendused ressursside jagamise võimekusega. Vaadeldakse erinevaid tehnoloogiad ja operatsioonilisi aspekte ning hinnatakse nende mõju.Et paremini mõista harjutusväljakute ühendamist, on üles seatud testkeskkond Eesti ja Tšehhi laborite infrastruktuuride vahel. Testiti erinevaid võrguparameetreid, operatsioone virtuaalmasinatega, virtualiseerimise tehnoloogiad ning keskkonna haldust avatud lähtekoodiga tööriistadega. Testide tulemused olid üllatavad ja positiivsed, muutes ühendatud küberharjutusväljakute kontseptsiooni saavutamise oodatust lihtsamaks.Magistritöö on kirjutatud inglise keeles ja sisaldab teksti 42 leheküljel, 7 peatükki, 12 joonist ja 4 tabelit.Võtmesõnad:Küberharjutusväljak, NATO, ühendamine, virtualiseerimine, rahvusvahelised küberkaitse õppusedAn essential element of the cyber defence capability is highly skilled and well-trained personnel. Enhancing awareness and education of technicians, operators and decision makers can be done through multinational exercises. It is unthinkable to use an operational production environment to train attack and defence of the IT system. For simulating a life like environment, a cyber range can be used. There are many emerging and operational cyber ranges in the EU and NATO. To benefit more from available resources, a federated cyber range environment for multinational cyber defence exercises can be built upon the current facilities. Federation can be achieved after agreements between nations and understanding of the technologies and limitations of different national ranges.This study compares two cyber ranges and looks into possibilities of pooling and sharing of national facilities and to the establishment of a logical federation of interconnected cyber ranges. The thesis gives recommendations on information flow, proof of concept, guide-lines and prerequisites to achieve an initial interconnection with pooling and sharing capabilities. Different technologies and operational aspects are discussed and their impact is analysed. To better understand concepts and assumptions of federation, a test environment with Estonian and Czech national cyber ranges was created. Different aspects of network parameters, virtual machine manipulations, virtualization technologies and open source administration tools were tested. Some surprising and positive outcomes were in the result of the tests, making logical federation technologically easier and more achievable than expected.The thesis is in English and contains 42 pages of text, 7 chapters, 12 figures and 4 tables.Keywords:Cyber Range, NATO, federation, virtualization, multinational cyber defence exercise

    Differentially Private Multi-Agent Planning for Logistic-like Problems

    Full text link
    Planning is one of the main approaches used to improve agents' working efficiency by making plans beforehand. However, during planning, agents face the risk of having their private information leaked. This paper proposes a novel strong privacy-preserving planning approach for logistic-like problems. This approach outperforms existing approaches by addressing two challenges: 1) simultaneously achieving strong privacy, completeness and efficiency, and 2) addressing communication constraints. These two challenges are prevalent in many real-world applications including logistics in military environments and packet routing in networks. To tackle these two challenges, our approach adopts the differential privacy technique, which can both guarantee strong privacy and control communication overhead. To the best of our knowledge, this paper is the first to apply differential privacy to the field of multi-agent planning as a means of preserving the privacy of agents for logistic-like problems. We theoretically prove the strong privacy and completeness of our approach and empirically demonstrate its efficiency. We also theoretically analyze the communication overhead of our approach and illustrate how differential privacy can be used to control it

    Cyprus as the Lighthouse of the East Mediterranean: Shaping EU Accession and Reunification Together. CEPS Paperback. April 2002

    Get PDF
    For over a quarter of a century, Cyprus has been a divided island, with Europe’s last remaining ‘Berlin Wall’ separating its Greek and Turkish Cypriot communities. This stalemate between the regions, however, is finally beginning to dissolve. Negotiations are currently underway to resolve the Cyprus conflict, re-unify the island and secure the accession of the whole of Cyprus to the EU in the near future. This CEPS report explores the ways in which these developments might come about. The authors argue that simultaneous action could transform the political structures and interests that have up until now made it impossible to resolve the division of the island

    MODELLING VIRTUAL ENVIRONMENT FOR ADVANCED NAVAL SIMULATION

    Get PDF
    This thesis proposes a new virtual simulation environment designed as element of an interoperable federation of simulator to support the investigation of complex scenarios over the Extended Maritime Framework (EMF). Extended Maritime Framework is six spaces environment (Underwater, Water surface, Ground, Air, Space, and Cyberspace) where parties involved in Joint Naval Operations act. The amount of unmanned vehicles involved in the simulation arise the importance of the Communication modelling, thus the relevance of Cyberspace. The research is applied to complex cases (one applied to deep waters and one to coast and littoral protection) as examples to validate this approach; these cases involve different kind of traditional assets (e.g. satellites, helicopters, ships, submarines, underwater sensor infrastructure, etc.) interact dynamically and collaborate with new autonomous systems (i.e. AUV, Gliders, USV and UAV). The use of virtual simulation is devoted to support validation of new concepts and investigation of collaborative engineering solutions by providing a virtual representation of the current situation; this approach support the creation of dynamic interoperable immersive framework that could support training for Man in the Loop, education and tactical decision introducing the Man on the Loop concepts. The research and development of the Autonomous Underwater Vehicles requires continuous testing so a time effective approach can result a very useful tool. In this context the simulation can be useful to better understand the behaviour of Unmanned Vehicles and to avoid useless experimentations and their costs finding problems before doing them. This research project proposes the creation of a virtual environment with the aim to see and understand a Joint Naval Scenario. The study will be focusing especially on the integration of Autonomous Systems with traditional assets; the proposed simulation deals especially with collaborative operation involving different types of Autonomous Underwater Vehicles (AUV), Unmanned Surface Vehicles (USV) and UAV (Unmanned Aerial Vehicle). The author develops an interoperable virtual simulation devoted to present the overall situation for supervision considering also the sensor capabilities, communications and mission effectiveness that results dependent of the different asset interaction over a complex heterogeneous network. The aim of this research is to develop a flexible virtual simulation solution as crucial element of an HLA federation able to address the complexity of Extended Maritime Framework (EMF). Indeed this new generation of marine interoperable simulation is a strategic advantage for investigating the problems related to the operational use of autonomous systems and to finding new ways to use them respect to different scenarios. The research deal with the creation of two scenarios, one related to military operations and another one on coastal and littoral protection where the virtual simulation propose the overall situation and allows to navigate into the virtual world considering the complex physics affecting movement, perception, interaction and communication. By this approach, it becomes evident the capability to identify, by experimental analysis within the virtual world, the new solutions in terms of engineering and technological configuration of the different systems and vehicles as well as new operational models and tactics to address the specific mission environment. The case of study is a maritime scenario with a representation of heterogeneous network frameworks that involves multiple vehicles both naval and aerial including AUVs, USVs, gliders, helicopter, ships, submarines, satellite, buoys and sensors. For the sake of clarity aerial communications will be represented divided from underwater ones. A connection point for the latter will be set on the keel line of surface vessels representing communication happening via acoustic modem. To represent limits in underwater communications, underwater signals have been considerably slowed down in order to have a more realistic comparison with aerial ones. A maximum communication distance is set, beyond which no communication can take place. To ensure interoperability the HLA Standard (IEEE 1516 evolved) is adopted to federate other simulators so to allow its extensibility for other case studies. Two different scenarios are modelled in 3D visualization: Open Water and Port Protection. The first one aims to simulate interactions between traditional assets in Extended Maritime Framework (EMF) such as satellite, navy ships, submarines, NATO Research Vessels (NRVs), helicopters, with new generation unmanned assets as AUV, Gliders, UAV, USV and the mutual advantage the subjects involved in the scenario can have; in other word, the increase in persistence, interoperability and efficacy. The second scenario models the behaviour of unmanned assets, an AUV and an USV, patrolling a harbour to find possible threats. This aims to develop an algorithm to lead patrolling path toward an optimum, guaranteeing a high probability of success in the safest way reducing human involvement in the scenario. End users of the simulation face a graphical 3D representation of the scenario where assets would be represented. He can moves in the scenario through a Free Camera in Graphic User Interface (GUI) configured to entitle users to move around the scene and observe the 3D sea scenario. In this way, players are able to move freely in the synthetic environment in order to choose the best perspective of the scene. The work is intended to provide a valid tool to evaluate the defencelessness of on-shore and offshore critical infrastructures that could includes the use of new technologies to take care of security best and preserve themselves against disasters both on economical and environmental ones

    Ontology Of Trusted Identity In Cyberspace

    Get PDF
    The nations digital infrastructure is in jeopardy because of inadequate provisions for privacy, identity, and security. Recent Internet activity has resulted in an onslaught of identity theft, fraud, digital crime, and an increasing burden to responsible citizens. The computer security and Internet communities have been generally responsive but apparently ineffective, so it is time for a third party to step in, take charge, and provide an infrastructure to assist in protecting individuals and non-person entities. This paper is a contribution to the domain of ontological commitment as it applies to a description of subjects, objects, actions, and relationships as they pertain to the National Strategy of Trusted Identity in Cyberspace initiative

    The United States Marine Corps Data Collaboration Requirements: Retrieving and Integrating Data From Multiple Databases

    Get PDF
    The goal of this research is to develop an information sharing and database integration model and suggest a framework to fully satisfy the United States Marine Corps collaboration requirements as well as its information sharing and database integration needs. This research is exploratory; it focuses on only one initiative: the IT-21 initiative. The IT-21 initiative dictates The Technology for the United States Navy and Marine Corps, 2000-2035: Becoming a 21st Century Force. The IT-21 initiative states that Navy and Marine Corps information infrastructure will be based largely on commercial systems and services, and the Department of the Navy must ensure that these systems are seamlessly integrated and that information transported over the infrastructure is protected and secure. The Delphi Technique, a qualitative method approach, was used to develop a Holistic Model and to suggest a framework for information sharing and database integration. Data was primarily collected from mid-level to senior information officers, with a focus on Chief Information Officers. In addition, an extensive literature review was conducted to gain insight about known similarities and differences in Strategic Information Management, information sharing strategies, and database integration strategies. It is hoped that the Armed Forces and the Department of Defense will benefit from future development of the information sharing and database integration Holistic Model
    corecore