3 research outputs found

    Deriving the Composite Simpson Rule by Using Bernstein Polynomials for Solving Volterra Integral Equations

    Get PDF
    In this paper we use Bernstein polynomials for deriving the modified Simpson's 3/8 , and the composite modified Simpson's 3/8 to solve one dimensional linear Volterra integral equations of the second kind , and we find that the solution computed by this procedure is very close to exact solution

    Mixed method for the product integral on the infinite interval

    Get PDF
    In this note, quadrature formula is constructed for product integral on the infinite interval I(f) = ∫ w(x)f(x)dx, where w(x) is a weight function and f(x) is a smooth decaying function for x > N (large enough) and piecewise discontinuous function of the first kind on the interval a ≤ x ≤ N. For the approximate method we have reduced infinite interval x [a, ∞) into the interval t[0,1] and used the mixed method: Cubic Newton’s divided difference formula on [0, t3) and Romberg method on [t3,1] with equal step size, ti = t0+ih,i=0, …,n, h=1/n, where t0 = 0,tn=1. Error term is obtained for mixed method on different classes of functions. Finally, numerical examples are presented to validate the method presented

    Deriving the Composite Simpson Rule by Using Bernstein Polynomials for Solving Volterra Integral Equations

    Get PDF
    In this paper we use Bernstein polynomials for deriving the modified Simpson's 3/8 , and the composite modified Simpson's 3/8 to solve one dimensional linear Volterra integral equations of the second kind , and we find that the solution computed by this procedure is very close to exact solution
    corecore