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Abstract: 
In this paper we use Bernstein polynomials for deriving the modified Simpson's 3/8 , 

and the composite modified Simpson's 3/8  to solve one dimensional linear Volterra 

integral equations of the second kind , and we find that the solution computed by this 

procedure is very close to exact solution. 
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Introduction: 
Integral equations are equations in 

which the unknown function appears 

under the sign of integral [1]. It is well 

known that integral equations arise in 

many branches of science, for example 

biological species [2],[3], sliding a 

bead along a wire [4], human 

population[4].Also integral equations 

have a relation with initial and 

boundary value problems[1],[3]. 

The theoretical methods for solving 

Volterra integral equations 

aresuccessiveapproximation, 

successive substitution, Laplace 

transformation, Adomian 

decomposition and series solution 

methods. Many researchers study the 

numerical 

solution[4],[5],[6],[7],[8],[9]. 

Block-by-block method is used for 

solving linear Volterra integral 

equations [10]. Quadrature 

method is used for solving linear 

Volterra integral equations of the 

second kind [11],[12]. 

 

Volterra Integral Equations: 

[1],[3] 
 

The general form of Volterra integral 

equation is 

 ( ) ( )

  ( )   ∫ (     ( ))     ( )

 

 

 

and this equation is said to be : 

 Volterra integral equation of the 

first kind if  ( )     
 Volterra integral equation of the 

second kind if  ( )     
 Linear if  (     ( ))  
 (   ) ( ), otherwise it is nonlinear. 

 Homogeneous if  ( )  
   otherwise it is nonhomogeneous. 

And,for more details see[1]. 

 

Bernstein Polynomials [13]: 
Bernstein polynomials are defined by 

    ( )  (
 

 
)   (   )      ( ) 

Where    ( 
 
)  

  

  (   ) 
 

They are  n+1  polynomials of degree 

n. For mathematical Convenience,  

weusually set                      

              
For n=1 

    ( )                          ( )    
For n=2 
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    ( )  (   )
           ( )

   ( 
  )            ( )   

  

A recursive definition of Bernstein 

polynomials is given by 

    ( )  (   )      ( )

          ( ) 
These polynomials are non-negative 

over the interval [0,1] and form a 

partition of unity 

[    ( )      ( )

       ( )      ( )

     ( )

             ]  
 

The Modified Simpson's 3/8 Rule: 

By the Bernstein polynomials 

∑ (
 

 
) (
 

 
)   (   )   

 

   

 

Where   is a function,             
Then 
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  ( )(   ) 
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  )     

 (   )(   )

  
    (

 

 
)   ( 

  )       ( )   

By substituting n=3. Then 

 ( )   ( )(   ) 

   (
 

 
)  (   ) 

   (
 

 
)   (   ) 

   (
 

 
)   (   )  

Let 

 ( )       (
 

 
)      (

 

 
)

     ( )     
 ( )    (   )

      (   )
 

     
 (   )

    
              ( ) 

By integrating both sides of equation 

(3) From 0 to 1, one can have:- 

∫  ( )   ∫  ( )  
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(              ) 

 
 

 
(              ) 

Now, by using the transformation 

     (   )   
   

 
and above 

equation, we get:- 

∫  ( )   
  

 
[        

 

 

   ]     ( ) 
This formula is said to be modified 

Simpson’s 3/8 rule. 

 

The Composite Modified 

Simpson's 3/8 Rule: 

The Composite modified Simpson's 

3/8 rule can be derived by extending 

the modified Simpson's 3/8 rule. 

This procedure is begin by dividing 

[a,b] into n subintervals (n is multiple 

of three), and applying the modified 

Simpson's 3/8 rule over each interval, 

then the sum of the results obtained for 

each interval isthe approximate value 

of integral, that is 

 

∫  ( )  
 

 

 ∫  ( )   
    

 

∫  ( )  
    

    

    ∫  ( )  
  (   ) 

  (   ) 

 ∫  ( )          
 

  (   ) 

        

 
   

 
 

 

∫  ( )   
  

 
[ ( )   (   )

 

 

  (    )   ( 
   )] 

 
  

 
[ (    )   (    )

  (    )
  (      )]     

  
  

 
[ (  (   ) )

  (  (   ) )
  (  (   ) )
  (  (   ) )] 

 
  

 
[ (  (   ) )

  (  (   ) )
  (  (   ) )
  ( )] 

 
  

 
[  ( )   (   )   (    )

   (    )
  (    )
  (    )   
   (  (   ) )
   (  (   ) )
  (  (   ) )
   ( )] 

 
  

 
[ ( )  ∑ [ (  )

   

         

  (    )]

  ∑  (  )

   

        

  ( ) ]   ( ) 

This formula is said to be the 

composite modified Simpson’s 3/8 

rule. 

 

Numerical Solution for Solving 

The One-dimensional Volterra 

Linear Integral Equation Using 

The Composite Modified 

Simpson’s 3/8 Rule: 

In this section, we use the composite 

modified Simpson’s 3/8 rule for 

solving the one-dimensionalVolterra 

linear integral equations of the second 

kind given by 
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 ( )   ( )   ∫  (   ) ( )       
 

 

    ( ) 
First, we divide the interval [a, b] into 

n subintervals[       ]   
             such that      
                  where n is multiple 

of three and   
   

 
   So, the problem 

here is        to find the numerical 

solution of equation (6) at each 

            . Then by setting 

     in equation (6), we get 

 (  )
  (  )

  ∫  (    ) ( )          
  

 

           ( ) 
For            We approximate 

the integral that appeared in the right 

hand side of equation (7) by the 

composite modified Simpson’s 3/8 rule 

to obtain:- 

      

   
  

 
 [ (     )  

 ∑ [ (     )  

   

         

  (       )    ] 

  ∑  (     )    (     )  

   

          

]  

                ( ) 
And, for              , we 

approximate the integral that appeared 

in the right hand side of equation (7) 

by the composite modified Trapezoidal 

rule [13] to get 

      
  

 
[ (     )  

  ∑[ (     )  

   

    

  (       )  ]]   

             ( ) 

To illustrate this method, we consider 

the following examples: 

Example (1): 

Consider the one-dimensional Volterra 

linear integral equation of the second 

kind:- 

 ( )    
 

 
∫     ( )            
 

 

   

whose exact solution is  ( )    
  

  , 

this equation can be solved 

numerically with the composite 

modified Simpson’s 3/8 rule. First, we 

divide the interval [0, 2] into 9 

subintervals, such that 

   
  

 
              . Then   

 ( )   , and the equation (8) 

becomes:- 

      
 

  
∑ (      

   

          

         )

 
 

  
∑       

   

          

 
 

  
  
     

             (  ) 
and the equation (9) becomes:- 

      
 

  
∑       

   

    

 
 

  
  
           

            (  ) 
By setting      in the equation (11) 

one can get                   

By setting      in the equation (11) 

one can get                   

By setting      in the equation (10) 

one can get                  . 

By continuing in this manner one can 

get the following values: 
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U0=0 U1=0.2224663554 U2=0.4473848062 

U3=0.6822919096 U4=0.9330498672 U5=1.2202686732 

U6=1.5752706589 U7=2.0084545071 U8=2.6015170971 

U9=3.4840871196 

 

Second, we divide the interval [0, 2] 

into 18 subintervals, such that 

   
 

 
               . Then   

 ( )     , and the equations (8), (9) 

become:- 

 

      
 

  
[ ∑ (      

   

          

           )

  ∑       

   

          

   
   ] 

                        (  ) 
and 

      
 

  
∑       

 

  
  
         

   

   

                (  ) 
By setting       in the equation (13) 

one can get                  

By setting       in the equation (13) 

one can get       0.2224052300 

and by setting       in the equation 

(12) one can get                   

And, By continuing in this manner one 

can get the following values:- 

 

U0=0 U1 =0.1111263548 U2  =0.2224052300 

U3 =0.3342955701 U4 =0.4471364570 U5  =0.5620748374 

U6 =0.6805480476 U7 =0.8028413818 U8  =0.9318813651 

U9 =1.0704371891 U10=1.2182194913 U11=1.3813511291 

U12=1.5650052777 U13=1.7675583096 U14=2.0014643364 

U15=2.2770419403 U16=2.5897590702 U17=2.9658216063 

U18=3.4276679769 

Third, we divide the interval [0, 2] into 

36 and 72 subintervals such that 

   
 

  
                            

 
 

  
        

            

Respectively and by following the 

same previous steps, one can get the 

results that can be found in the 

appendix of example (1). Some of 

these results are tabulated down with 

the comparison with the exact solution. 

 

Table (1) represents the exact and the numerical solution of example (1)at 

specific points for different values of n 

X Exact Solution 
Numerical Solution 

N=9 N=18 N=36 N=72 

0.222222222 0.2223848585 0.2224663554 0.2224052300 0.2223899536 0.2223861320 

0.444444444 0.4470533010 0.4473848062 0.4471364570 0.4470740553 0.4470584955 

0.666666667 0.6799663130 0.6822919096 0.6805480476 0.6801117669 0.6800026778 

0.888888889 0.9314983085 0.9330498672 0.9318813651 0.9315949132 0.9315223638 

1.111111111 1.2175126789 1.2202686732 1.2182194913 1.2176873746 1.2175566340 

1.333333333 1.5615934837 1.5752706589 1.5650052777 1.5624459538 1.5618065712 

1.555555556 1.9992459998 2.0084545071 2.0014643364 1.9998129746 1.9993862624 

1.777777778 2.5855576010 2.6015170971 2.5897590702 2.5865822277 2.5858171455 
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2 3.4092097306 3.4840871196 3.4276679769 3.4134233850 3.4103583731 

 
Fig(1): Graph of exact and 

numerical solution of example 1. 

 

Example(2): 

Consider the one-dimensional Volterra 

linear integral equation of the second 

kind:- 

 ( )    
 

  
 
 

 

 ∫ ( 
 

 

  )
 

    ( )          
   

Whose exact solution is  ( )   . We 

solve this equation numerically with 

the composite modified Simpson's 3/8 

rule. First, we divide the interval [0, 2] 

into 9 subintervals such that 

   
  

 
              . Then   

 ( )         the equations (8),(9) 

become:- 

      
 

  
 
 

 

 

 
 

 
{ ∑ [(  

   

          

   )
 

    (  

     )
 

     ]} 

 
 

 
∑ (     )

 

   

   

          

                 

            (  ) 
and 

      
 

  
 
 

 

  
 

  
∑(     )

 

   

   

   

 

              (  ) 
By setting       in equation (15) one 

can get                   . 

By setting       in equation (15 ) one 

can get                   . 

By setting  i = 3   in equation (14) one 

can get       0.6576958875. 

And, by continuing in this manner one 

can get the following values:- 

 

U0=0 U1=0.2216310035 U2=0.4429149690 

U3=0.6576958875 U4=0.8844957113 U5=1.1046072143 

U6=1.3079521615 U7=1.5427891825 U8=1.7602438383 

U9=1.9464920052 

Second, if we divide the interval [0, 2] 

into 18 subintervals, such that 

   
 

 
               . Then the 

equations (8), (9) become:- 

      
 

  
 
 

 

 

 
 

  
∑ [(  

   

          

   )
 

   

 (       )
 

     ] 

0.00

0.22

0.44

0.66

0.88

1.10

1.32

1.54

1.76

1.98

0 0.22 0.44 0.66 0.88 1.1 1.32 1.54 1.76 1.98

Exact Solution

Numerical Solution N=9

Numerical Solution N=72
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∑ (     )

 

   

   

          

         

                 (  ) 
and 

      
 

  
 
 

 

 

 
 

 
∑(  

   

   

   )
 

          

                  (  ) 

By setting      in equation (17) one 

can get                    
By setting      in equation (17) one 

can get                    
By setting      in equation (16) one 

can get      0.3325444915 

And, by continuing in this manner one 

can get the following values:- 

 

 

u0=0 u1=0.1110588543 u2=0.2220880359 

u3=0.3325444915 u4=0.4440838939 u5=0.5550527639 

u6=0.6645903134 u7=0.7769297456 u8=0.8878314093 

u9=0.9962027164 u10=1.1095483963 u11=1.2203506870 

u12=1.3273025035 u13=1.4418215959 u14=1.5524695371 

u15=1.6577165689 u16=1.7735580777 u17=1.8839681446 

u18=1.9871689996  

 

 

Third, we divide the interval [0, 2] into 

36 and 72 subintervals such that 

   
 

  
                       

 
 

  
                

Respectively and by following the 

same previous steps one can get the 

results that can be found in the 

appendix of example (2). Some of 

these results are tabulated down with 

the comparison with the exact solution. 

 

Table (2)represents the exact and the numerical solution of example (2)       at 

specific points for different values of n 

X Exact Solution 
Numerical Solution 

N=9 N=18 N=36 N=72 

0.222222222 0.2222222222 0.2216310035 0.2220880359 0.2221907850 0.2222147077 

0.444444444 0.4444444444 0.4429149690 0.4440838939 0.4443581710 0.4444235479 

0.666666667 0.6666666667 0.6576958875 0.6645903134 0.6661767275 0.6665490295 

0.888888889 0.8888888889 0.8844957113 0.8878314093 0.8886332252 0.8888264788 

1.111111111 1.1111111111 1.1046072143 1.1095483963 1.1107322356 1.1110185287 

1.333333333 1.3333333333 1.3079521615 1.3273025035 1.3318853591 1.3329816693 

1.555555556 1.5555555556 1.5427891825 1.5524695371 1.5548073905 1.5553725636 

1.777777778 1.7777777778 1.7602438383 1.7735580777 1.7767539344 1.7775274066 

2 2.0000000000 1.9464920052 1.9871689996 1.9969012387 1.9992444590 
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Fig (2): Graph of exact and 

numerical solution of example 2 
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اشتقاق قاعدة سمبسون المعدلة باستخدام متعددات حدود بيرنشتاينلحل معادلات 

 فولتيرا التكاملية

 
 *جنان أحمد الأعسم

 

 العراق –جامعة بغداد  -كلية العلوم للبنات –قسم الرياضيات *

 

 الخلاصة :

0.00

0.22

0.44

0.66

0.88

1.10

1.32

1.54

1.76

1.98

0 0.22 0.44 0.66 0.88 1.1 1.32 1.54 1.76 1.98

Exact simpson

Result simpson9

esult simpson72
Numerical Solution  72 

Numerical Solution  9 
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معادلات فولتيرا  المعدلة وذلك لحل (1/3شتقاق قاعدة سمبسون )ستخدام متعددات حدود بيرنشتاين لأقد تم ا

 جدا من الحل التحليلي )المضبوط(. .وتبين ان الحل باستخدام هذه الطريقة قريبلتكامليةالخطية منالنوع الثانيا

 
 


