4,699 research outputs found

    Evolving Ensemble Fuzzy Classifier

    Full text link
    The concept of ensemble learning offers a promising avenue in learning from data streams under complex environments because it addresses the bias and variance dilemma better than its single model counterpart and features a reconfigurable structure, which is well suited to the given context. While various extensions of ensemble learning for mining non-stationary data streams can be found in the literature, most of them are crafted under a static base classifier and revisits preceding samples in the sliding window for a retraining step. This feature causes computationally prohibitive complexity and is not flexible enough to cope with rapidly changing environments. Their complexities are often demanding because it involves a large collection of offline classifiers due to the absence of structural complexities reduction mechanisms and lack of an online feature selection mechanism. A novel evolving ensemble classifier, namely Parsimonious Ensemble pENsemble, is proposed in this paper. pENsemble differs from existing architectures in the fact that it is built upon an evolving classifier from data streams, termed Parsimonious Classifier pClass. pENsemble is equipped by an ensemble pruning mechanism, which estimates a localized generalization error of a base classifier. A dynamic online feature selection scenario is integrated into the pENsemble. This method allows for dynamic selection and deselection of input features on the fly. pENsemble adopts a dynamic ensemble structure to output a final classification decision where it features a novel drift detection scenario to grow the ensemble structure. The efficacy of the pENsemble has been numerically demonstrated through rigorous numerical studies with dynamic and evolving data streams where it delivers the most encouraging performance in attaining a tradeoff between accuracy and complexity.Comment: this paper has been published by IEEE Transactions on Fuzzy System

    Graph ensemble boosting for imbalanced noisy graph stream classification

    Full text link
    © 2014 IEEE. Many applications involve stream data with structural dependency, graph representations, and continuously increasing volumes. For these applications, it is very common that their class distributions are imbalanced with minority (or positive) samples being only a small portion of the population, which imposes significant challenges for learning models to accurately identify minority samples. This problem is further complicated with the presence of noise, because they are similar to minority samples and any treatment for the class imbalance may falsely focus on the noise and result in deterioration of accuracy. In this paper, we propose a classification model to tackle imbalanced graph streams with noise. Our method, graph ensemble boosting, employs an ensemble-based framework to partition graph stream into chunks each containing a number of noisy graphs with imbalanced class distributions. For each individual chunk, we propose a boosting algorithm to combine discriminative subgraph pattern selection and model learning as a unified framework for graph classification. To tackle concept drifting in graph streams, an instance level weighting mechanism is used to dynamically adjust the instance weight, through which the boosting framework can emphasize on difficult graph samples. The classifiers built from different graph chunks form an ensemble for graph stream classification. Experiments on real-life imbalanced graph streams demonstrate clear benefits of our boosting design for handling imbalanced noisy graph stream

    An ontology enhanced parallel SVM for scalable spam filter training

    Get PDF
    This is the post-print version of the final paper published in Neurocomputing. The published article is available from the link below. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. Copyright @ 2013 Elsevier B.V.Spam, under a variety of shapes and forms, continues to inflict increased damage. Varying approaches including Support Vector Machine (SVM) techniques have been proposed for spam filter training and classification. However, SVM training is a computationally intensive process. This paper presents a MapReduce based parallel SVM algorithm for scalable spam filter training. By distributing, processing and optimizing the subsets of the training data across multiple participating computer nodes, the parallel SVM reduces the training time significantly. Ontology semantics are employed to minimize the impact of accuracy degradation when distributing the training data among a number of SVM classifiers. Experimental results show that ontology based augmentation improves the accuracy level of the parallel SVM beyond the original sequential counterpart

    Stacked Generalizations in Imbalanced Fraud Data Sets using Resampling Methods

    Full text link
    This study uses stacked generalization, which is a two-step process of combining machine learning methods, called meta or super learners, for improving the performance of algorithms in step one (by minimizing the error rate of each individual algorithm to reduce its bias in the learning set) and then in step two inputting the results into the meta learner with its stacked blended output (demonstrating improved performance with the weakest algorithms learning better). The method is essentially an enhanced cross-validation strategy. Although the process uses great computational resources, the resulting performance metrics on resampled fraud data show that increased system cost can be justified. A fundamental key to fraud data is that it is inherently not systematic and, as of yet, the optimal resampling methodology has not been identified. Building a test harness that accounts for all permutations of algorithm sample set pairs demonstrates that the complex, intrinsic data structures are all thoroughly tested. Using a comparative analysis on fraud data that applies stacked generalizations provides useful insight needed to find the optimal mathematical formula to be used for imbalanced fraud data sets.Comment: 19 pages, 3 figures, 8 table
    corecore