186 research outputs found

    An Overview on Artificial Intelligence Techniques for Diagnosis of Schizophrenia Based on Magnetic Resonance Imaging Modalities: Methods, Challenges, and Future Works

    Full text link
    Schizophrenia (SZ) is a mental disorder that typically emerges in late adolescence or early adulthood. It reduces the life expectancy of patients by 15 years. Abnormal behavior, perception of emotions, social relationships, and reality perception are among its most significant symptoms. Past studies have revealed the temporal and anterior lobes of hippocampus regions of brain get affected by SZ. Also, increased volume of cerebrospinal fluid (CSF) and decreased volume of white and gray matter can be observed due to this disease. The magnetic resonance imaging (MRI) is the popular neuroimaging technique used to explore structural/functional brain abnormalities in SZ disorder owing to its high spatial resolution. Various artificial intelligence (AI) techniques have been employed with advanced image/signal processing methods to obtain accurate diagnosis of SZ. This paper presents a comprehensive overview of studies conducted on automated diagnosis of SZ using MRI modalities. Main findings, various challenges, and future works in developing the automated SZ detection are described in this paper

    An overview of artificial intelligence techniques for diagnosis of Schizophrenia based on magnetic resonance imaging modalities: Methods, challenges, and future works

    Get PDF
    Schizophrenia (SZ) is a mental disorder that typically emerges in late adolescence or early adulthood. It reduces the life expectancy of patients by 15 years. Abnormal behavior, perception of emotions, social relationships, and reality perception are among its most significant symptoms. Past studies have revealed that SZ affects the temporal and anterior lobes of hippocampus regions of the brain. Also, increased volume of cerebrospinal fluid (CSF) and decreased volume of white and gray matter can be observed due to this disease. Magnetic resonance imaging (MRI) is the popular neuroimaging technique used to explore structural/functional brain abnormalities in SZ disorder, owing to its high spatial resolution. Various artificial intelligence (AI) techniques have been employed with advanced image/signal processing methods to accurately diagnose SZ. This paper presents a comprehensive overview of studies conducted on the automated diagnosis of SZ using MRI modalities. First, an AI-based computer aided-diagnosis system (CADS) for SZ diagnosis and its relevant sections are presented. Then, this section introduces the most important conventional machine learning (ML) and deep learning (DL) techniques in the diagnosis of diagnosing SZ. A comprehensive comparison is also made between ML and DL studies in the discussion section. In the following, the most important challenges in diagnosing SZ are addressed. Future works in diagnosing SZ using AI techniques and MRI modalities are recommended in another section. Results, conclusion, and research findings are also presented at the end.Ministerio de Ciencia e Innovación (España)/ FEDER under the RTI2018-098913-B100 projectConsejería de Economía, Innovación, Ciencia y Empleo (Junta de Andalucía) and FEDER under CV20-45250 and A-TIC-080-UGR18 project

    Diagnosis of early mild cognitive impairment using a multiobjective optimization algorithm based on T1-MRI data

    Get PDF
    Alzheimer’s disease (AD) is the most prevalent form of dementia. The accurate diagnosis of AD, especially in the early phases is very important for timely intervention. It has been suggested that brain atrophy, as measured with structural magnetic resonance imaging (sMRI), can be an efficacy marker of neurodegeneration. While classification methods have been successful in diagnosis of AD, the performance of such methods have been very poor in diagnosis of those in early stages of mild cognitive impairment (EMCI). Therefore, in this study we investigated whether optimisation based on evolutionary algorithms (EA) can be an effective tool in diagnosis of EMCI as compared to cognitively normal participants (CNs). Structural MRI data for patients with EMCI (n = 54) and CN participants (n = 56) was extracted from Alzheimer’s disease Neuroimaging Initiative (ADNI). Using three automatic brain segmentation methods, we extracted volumetric parameters as input to the optimisation algorithms. Our method achieved classification accuracy of greater than 93%. This accuracy level is higher than the previously suggested methods of classification of CN and EMCI using a single- or multiple modalities of imaging data. Our results show that with an effective optimisation method, a single modality of biomarkers can be enough to achieve a high classification accuracy

    Contributions of Graph Theory and Algorithms to Animal Behaviour and Neuroscience

    Get PDF
    Η θεωρία γραφημάτων και οι αλγόριθμοι προσφέρουν πολύτιμες εργαλειοθήκες για τη μοντε- λοποίηση καθώς και την ανάλυση πολυάριθμων φαινομένων στις φυσικές επιστήμες. Εδώ παρουσιάζεται μια ανασκόπηση της σύγχρονης βιβλιογραφίας, χωρισμένη σε τέσσερα κύρια κεφάλαια, δίνοντας κάποιες ενδείξεις για το πώς οι έννοιες αυτών των δύο κλάδων μπορούν να χρησιμοποιηθούν για τη μελέτη της συμπεριφοράς των ζώων και της νευροεπιστήμης. Κατ ’εξαίρεση, το πρώτο μέρος του πρώτου κεφαλαίου παρέχει μια σύντομη συζήτηση σχετικά με τις εφαρμογές της θεωρίας γραφημάτων στη μοριακή βιολογία. Η επιλογή αυτή έγινε προκειμένου να καταστεί η εργασία αυτή πληρέστερη και να δοθεί στους αναγνώστες με διαφορετικό υπόβαθρο, όσο το δυνατόν περισσότερο, συνολική άποψη για τη δυνητική χρησι- μότητα τέτοιων διεπιστημονικών προσεγγίσεων. Τα υπόλοιπα δύο τμήματα του πρώτου κεφα- λαίου εστιάζουν σε δίκτυα του εγκεφάλου και σε κεντρικές έννοιες της θεωρίας γραφημάτων, όπως η κεντρικότητα, στη μελέτη τους. Το δεύτερο κεφάλαιο εισάγει μερικές έννοιες της κοινωνικότητας των ζώων και αναφέρεται σε μελέτες της συνεργασίας στο ζωικό βασίλειο, εστιάζοντας στην εξελικτική θεωρία γραφημάτων και παιγνίων. Επιπλέον, στη τελευταία ενότητα αυτού του κεφαλαίου συζητείται η συλλογική κίνηση ομάδων ζώων, παρέχοντας εκτός των άλλων, εισαγωγή βασικών όρων για το επόμενο τρίτο κεφάλαιο. Η διεπιστημονική έρευνα, με στόχο την ενοποίηση μεθόδων από διαφορετικούς τομείς, λαμβάνει χώρα ευρέως για να απαντήσει βιολογικά ερωτήματα. Εντούτοις, όπως παρουσιάζεται παρακάτω, η έρευνα στους αλγορίθμους και στη βιολογία μπορούν να συμβάλλουν στην ανάπτυξη η μια της άλλης. Ως εκ τούτου, το τρίτο κεφάλαιο παρέχει πληροφορίες σχετικά με αλγόριθμους των οποίων ο σχεδιασμός έχει εμπνευστεί από τη (συλλογική) συμπεριφορά των ζώων στο φυσικό περιβάλλον. Τέλος, το τέταρτο κεφάλαιο αποκλίνει εκ νέου από το επίκεντρο των προηγούμε- νων κεφαλαίων και κάνει μια σύντομη εισαγωγή στο σημαντικό, αλλά και αμφιλεγόμενο, υπολογιστικό χαρακτήρα της νόησης και κατ’ επέκταση της συμπεριφοράς. Συνολικά, μπορεί κανείς να παρατηρήσει ότι η συνεργασία των προαναφερθέντων πεδίων είναι εκτεταμένη ενώ η πραγματοποιημένη έρευνα ανοίγει νέα ερωτήματα που μπορούν να μελετηθούν μόνο υπό το φως τέτοιων διεπιστημονικών συνεργασιών.Graph theory and algorithms offer precious toolboxes for the modelling as well as the analysis of numerous phenomena in natural sciences. Here a review of the modern bibliography is pre- sented, divided in four main chapters, giving some indications on how the concepts of these two disciplines can be used for the study of animal behaviour and neuroscience. As an exception the premier part of the first chapter provides a short discussion on the applications of graph theory on molecular biology. This choice made in order to make this work more complete and give to the readers from various backgrounds an, as much as possible, overall view of the future potential of such interdisciplinary approaches. The rest two sections of the first chapter deals with brain networks and central terms of graph theory, such as centrality, in their study. The second chapter introduces some concepts of animal sociality and refers to studies of animal cooperation, focusing on evolutionary graph and game theory. Moreover, in the last section of this chapter the collective motion of animal groups is discussed providing, into the bargain, an introduction of basic terms for the subsequent third chapter. Interdisciplinary research, aiming to unite methods from different fields, is vastly used in order to answer biological questions. Although, as it is presented below, both the fields of algorithms and biology can contribute to the elaboration of each other. Hence, the third chapter provides information about algorithms whose design has been inspired by the (collective) behaviour of animals in the nature. Finally, the fourth chapter deviates anew from the central focus of the previous chapters and makes a short introduction in the substantial controversial computational nature of cognition and by extension behaviour. Overall, one can observe that the cooperation of the above mentioned fields is extensive while the accomplished research opens new questions which can be studied only in the light of such collaborations
    corecore