13,437 research outputs found

    An Annotation Management System for Relational Databases

    Get PDF

    EST-PAC a web package for EST annotation and protein sequence prediction

    Get PDF
    With the decreasing cost of DNA sequencing technology and the vast diversity of biological resources, researchers increasingly face the basic challenge of annotating a larger number of expressed sequences tags (EST) from a variety of species. This typically consists of a series of repetitive tasks, which should be automated and easy to use. The results of these annotation tasks need to be stored and organized in a consistent way. All these operations should be self-installing, platform independent, easy to customize and amenable to using distributed bioinformatics resources available on the Internet. In order to address these issues, we present EST-PAC a web oriented multi-platform software package for expressed sequences tag (EST) annotation. EST-PAC provides a solution for the administration of EST and protein sequence annotations accessible through a web interface. Three aspects of EST annotation are automated: 1) searching local or remote biological databases for sequence similarities using Blast services, 2) predicting protein coding sequence from EST data and, 3) annotating predicted protein sequences with functional domain predictions. In practice, EST-PAC integrates the BLASTALL suite, EST-Scan2 and HMMER in a relational database system accessible through a simple web interface. EST-PAC also takes advantage of the relational database to allow consistent storage, powerful queries of results and, management of the annotation process. The system allows users to customize annotation strategies and provides an open-source data-management environment for research and education in bioinformatics

    bdbms -- A Database Management System for Biological Data

    Full text link
    Biologists are increasingly using databases for storing and managing their data. Biological databases typically consist of a mixture of raw data, metadata, sequences, annotations, and related data obtained from various sources. Current database technology lacks several functionalities that are needed by biological databases. In this paper, we introduce bdbms, an extensible prototype database management system for supporting biological data. bdbms extends the functionalities of current DBMSs to include: (1) Annotation and provenance management including storage, indexing, manipulation, and querying of annotation and provenance as first class objects in bdbms, (2) Local dependency tracking to track the dependencies and derivations among data items, (3) Update authorization to support data curation via content-based authorization, in contrast to identity-based authorization, and (4) New access methods and their supporting operators that support pattern matching on various types of compressed biological data types. This paper presents the design of bdbms along with the techniques proposed to support these functionalities including an extension to SQL. We also outline some open issues in building bdbms.Comment: This article is published under a Creative Commons License Agreement (http://creativecommons.org/licenses/by/2.5/.) You may copy, distribute, display, and perform the work, make derivative works and make commercial use of the work, but, you must attribute the work to the author and CIDR 2007. 3rd Biennial Conference on Innovative Data Systems Research (CIDR) January 710, 2007, Asilomar, California, US

    The design and implementation of an infrastructure for multimedia digital libraries

    Get PDF
    We develop an infrastructure for managing, indexing and serving multimedia content in digital libraries. This infrastructure follows the model of the Web, and thereby is distributed in nature. We discuss the design of the Librarian, the component that manages meta data about the content. The management of meta data has been separated from the media servers that manage the content itself. Also, the extraction of the meta data is largely independent of the Librarian. We introduce our extensible data model and the daemon paradigm that are the core pieces of this architecture. We evaluate our initial implementation using a relational database. We conclude with a discussion of the lessons we learned in building this system, and proposals for improving the flexibility, reliability, and performance of the syste

    Ontology-driven International Maize Information System (IMIS) for Phenotypic and Genotypic Data Exchange

    Get PDF
    The Consultative Group on International Agricultural Research (CGIAR; http://www.cgiar.org/) centres have developed the International Crop Information System (ICIS; http://www.icis.cgiar.org) for the management and integration of global information on genetic resources, and germplasm improvement for any crop. The Maize breeding programs at CIMMYT (http://beta.cimmyt.org/) have different software tools to manage phenotypic, genotypic, and environmental information for their experiments generated worldwide. These tools have the capacity of collecting information in the field, wet lab, and store it into different relational databases. The IMIS (http://imis.cimmyt.org/confluence/display/IMIS/Crop+Finder) is an implementation of the ICIS, which is a computerized database system for general, integrated management and utilization of genealogy, nomenclature, genetic, phenotypic and characterization data for maize. Data exchange within and between databases as well as retrieving information are often hampered by the variability of terms used to describe comparable objects. To overcome this problem, the Crop Ontology (CO) database (http://cropontology.org/) is developed. It provides controlled vocabulary sets for several economically important plant species and facilitates biocurators working in genebanks of plant genetic resources (PGR) and crop breeding data curation and annotation. The maize trait ontology is developed as one of subclasses of CO trait ontology providing standardized trait descriptions, scales and scale values implemented into the IMIS. This ontology-driven IMIS will allow researchers who wish to exploit comparative phenotypic and genotypic information of maize to elucidate functional aspects of each trait

    Towards a query language for annotation graphs

    Get PDF
    The multidimensional, heterogeneous, and temporal nature of speech databases raises interesting challenges for representation and query. Recently, annotation graphs have been proposed as a general-purpose representational framework for speech databases. Typical queries on annotation graphs require path expressions similar to those used in semistructured query languages. However, the underlying model is rather different from the customary graph models for semistructured data: the graph is acyclic and unrooted, and both temporal and inclusion relationships are important. We develop a query language and describe optimization techniques for an underlying relational representation.Comment: 8 pages, 10 figure

    Impliance: A Next Generation Information Management Appliance

    Full text link
    ably successful in building a large market and adapting to the changes of the last three decades, its impact on the broader market of information management is surprisingly limited. If we were to design an information management system from scratch, based upon today's requirements and hardware capabilities, would it look anything like today's database systems?" In this paper, we introduce Impliance, a next-generation information management system consisting of hardware and software components integrated to form an easy-to-administer appliance that can store, retrieve, and analyze all types of structured, semi-structured, and unstructured information. We first summarize the trends that will shape information management for the foreseeable future. Those trends imply three major requirements for Impliance: (1) to be able to store, manage, and uniformly query all data, not just structured records; (2) to be able to scale out as the volume of this data grows; and (3) to be simple and robust in operation. We then describe four key ideas that are uniquely combined in Impliance to address these requirements, namely the ideas of: (a) integrating software and off-the-shelf hardware into a generic information appliance; (b) automatically discovering, organizing, and managing all data - unstructured as well as structured - in a uniform way; (c) achieving scale-out by exploiting simple, massive parallel processing, and (d) virtualizing compute and storage resources to unify, simplify, and streamline the management of Impliance. Impliance is an ambitious, long-term effort to define simpler, more robust, and more scalable information systems for tomorrow's enterprises.Comment: This article is published under a Creative Commons License Agreement (http://creativecommons.org/licenses/by/2.5/.) You may copy, distribute, display, and perform the work, make derivative works and make commercial use of the work, but, you must attribute the work to the author and CIDR 2007. 3rd Biennial Conference on Innovative Data Systems Research (CIDR) January 710, 2007, Asilomar, California, US
    • …
    corecore