6,451 research outputs found

    Efficient Resolution of Anisotropic Structures

    Get PDF
    We highlight some recent new delevelopments concerning the sparse representation of possibly high-dimensional functions exhibiting strong anisotropic features and low regularity in isotropic Sobolev or Besov scales. Specifically, we focus on the solution of transport equations which exhibit propagation of singularities where, additionally, high-dimensionality enters when the convection field, and hence the solutions, depend on parameters varying over some compact set. Important constituents of our approach are directionally adaptive discretization concepts motivated by compactly supported shearlet systems, and well-conditioned stable variational formulations that support trial spaces with anisotropic refinements with arbitrary directionalities. We prove that they provide tight error-residual relations which are used to contrive rigorously founded adaptive refinement schemes which converge in L2L_2. Moreover, in the context of parameter dependent problems we discuss two approaches serving different purposes and working under different regularity assumptions. For frequent query problems, making essential use of the novel well-conditioned variational formulations, a new Reduced Basis Method is outlined which exhibits a certain rate-optimal performance for indefinite, unsymmetric or singularly perturbed problems. For the radiative transfer problem with scattering a sparse tensor method is presented which mitigates or even overcomes the curse of dimensionality under suitable (so far still isotropic) regularity assumptions. Numerical examples for both methods illustrate the theoretical findings

    A cell-centred finite volume approximation for second order partial derivative operators with full matrix on unstructured meshes in any space dimension

    Full text link
    Finite volume methods for problems involving second order operators with full diffusion matrix can be used thanks to the definition of a discrete gradient for piecewise constant functions on unstructured meshes satisfying an orthogonality condition. This discrete gradient is shown to satisfy a strong convergence property on the interpolation of regular functions, and a weak one on functions bounded for a discrete H1H^1 norm. To highlight the importance of both properties, the convergence of the finite volume scheme on a homogeneous Dirichlet problem with full diffusion matrix is proven, and an error estimate is provided. Numerical tests show the actual accuracy of the method

    Adjoint-Based Error Estimation and Mesh Adaptation for Hybridized Discontinuous Galerkin Methods

    Full text link
    We present a robust and efficient target-based mesh adaptation methodology, building on hybridized discontinuous Galerkin schemes for (nonlinear) convection-diffusion problems, including the compressible Euler and Navier-Stokes equations. Hybridization of finite element discretizations has the main advantage, that the resulting set of algebraic equations has globally coupled degrees of freedom only on the skeleton of the computational mesh. Consequently, solving for these degrees of freedom involves the solution of a potentially much smaller system. This not only reduces storage requirements, but also allows for a faster solution with iterative solvers. The mesh adaptation is driven by an error estimate obtained via a discrete adjoint approach. Furthermore, the computed target functional can be corrected with this error estimate to obtain an even more accurate value. The aim of this paper is twofold: Firstly, to show the superiority of adjoint-based mesh adaptation over uniform and residual-based mesh refinement, and secondly to investigate the efficiency of the global error estimate

    On discrete functional inequalities for some finite volume schemes

    Get PDF
    We prove several discrete Gagliardo-Nirenberg-Sobolev and Poincar\'e-Sobolev inequalities for some approximations with arbitrary boundary values on finite volume meshes. The keypoint of our approach is to use the continuous embedding of the space BV(Ω)BV(\Omega) into LN/(N−1)(Ω)L^{N/(N-1)}(\Omega) for a Lipschitz domain Ω⊂RN \Omega \subset \mathbb{R}^{N}, with N≥2N \geq 2. Finally, we give several applications to discrete duality finite volume (DDFV) schemes which are used for the approximation of nonlinear and non isotropic elliptic and parabolic problems

    A Comparison of Hybridized and Standard DG Methods for Target-Based hp-Adaptive Simulation of Compressible Flow

    Get PDF
    We present a comparison between hybridized and non-hybridized discontinuous Galerkin methods in the context of target-based hp-adaptation for compressible flow problems. The aim is to provide a critical assessment of the computational efficiency of hybridized DG methods. Hybridization of finite element discretizations has the main advantage, that the resulting set of algebraic equations has globally coupled degrees of freedom only on the skeleton of the computational mesh. Consequently, solving for these degrees of freedom involves the solution of a potentially much smaller system. This not only reduces storage requirements, but also allows for a faster solution with iterative solvers. Using a discrete-adjoint approach, sensitivities with respect to output functionals are computed to drive the adaptation. From the error distribution given by the adjoint-based error estimator, h- or p-refinement is chosen based on the smoothness of the solution which can be quantified by properly-chosen smoothness indicators. Numerical results are shown for subsonic, transonic, and supersonic flow around the NACA0012 airfoil. hp-adaptation proves to be superior to pure h-adaptation if discontinuous or singular flow features are involved. In all cases, a higher polynomial degree turns out to be beneficial. We show that for polynomial degree of approximation p=2 and higher, and for a broad range of test cases, HDG performs better than DG in terms of runtime and memory requirements
    • …
    corecore