43 research outputs found

    Far-field prediction using only magnetic near-field scanning and modeling delay variations in CMOS digital logic circuits due to electrical disturbances in the power supply

    Get PDF
    The first topic of this dissertation is far-field prediction using only magnetic near-field scanning. Near-field scanning has been used extensively for the far-field estimation of antennas. Applied to electromagnetic compatibility (EMC) problems, near-field scanning has been used to estimate emissions from both integrated circuits (ICs) and printed circuit boards (PCBs). Interest in applying far-field predictions using near-field to EMI/EMC problems has recently grown. To predict the far-field emissions from a PCB in the top half space, the near-field data on a planar surface above PCB usually is sufficient. However, near-field measurement on only one planar surface may not be enough to predict the far-field radiation of three-dimensional structures. The near-field on an enclosed Huygens\u27s surface may be preferred for near-field scanning when predicting the far-field radiation associated with the EMI problems of some complex structures. Based on the equivalence theorem (Huygens\u27s principle), both equivalent electric current obtained from the tangential magnetic field and equivalent magnetic current obtained from the tangential electric field are needed to perform far-field transformation from near-field data. However, designing electric field probes for tangential components is more difficult than designing magnetic field probes. As a result and in the interest of reducing scan time, far-field transformation based only on magnetic field near-field measurements is preferred. In the first paper, a novel method is proposed to predict the far-field radiation using only the magnetic near-field component on a Huygens\u27s box. The proposed method was verified with two simulated examples and one measurement case. The effect of inaccuracy of magnetic field and the incompleteness of the Huygens\u27s box on far-field results is investigated in this paper. The proposed method can be applied for arbitrary shapes of closed Huygens\u27s surfaces. Only the tangential magnetic field needs to be measured. And it also shows good accuracy and robustness in use. Measuring only the magnetic field cuts the scan time in half. The second topic of this dissertation is modeling delay variations in CMOS digital logic circuits due to electrical disturbances in the power supply. Electronic designers go to considerable effort to minimize the susceptibility of electronic systems against electromagnetic interference. For many systems, the component which fails is an integrated circuit (IC). Susceptibilities are typically found through testing, which is expensive, time consuming, and does not always uncover problems that are encountered in the field. While IC-level testing helps to establish the operational limits of an IC, testing rarely ensures the IC can withstand all interferences, even within the specified limits. Even when a problem is found, the engineer often does not know why a problem was caused or the best way to prevent the problem in the future. Solving problems through trial and error cannot be done as it is at the system level, because of the prohibitive cost of manufacturing and testing multiple versions of the IC. The IC engineer must build the IC to be robust on the first design cycle. IC failures may be caused by a hard failure of the IC, for example, due to latch-up or permanent damage to an I/O pin, or may be caused by a soft failure, where incorrect data is read from I/O, internal logic, and/or memory. Soft errors that occur within the logic and/or memory components of the IC can be particularly difficult to deal with since errors associated with these components are much more diverse and complex than those associated with I/O. One common reason for soft errors is that a change in the power supply voltage causes a change in the propagation delay through internal logic or the clock tree, so that the clock edge arrives at a register before valid data and an incorrect logic value is stored at the register. While methods are available to predict the level of voltage fluctuation within the IC from an external electromagnetic event, predicting when a failure will occur as a result of the event is challenging. Methods are developed in the second paper and third paper to help predict these soft failures, by predicting the change in the propagation delay through logic during an electromagnetic disturbance of the power supply. In the second paper, an analytical delay model was developed to predict propagation delay variations in logic circuits when the power supply is disturbed by an electromagnetic event. Simulated and measured results demonstrate the accuracy of the approach. Four different types of logic circuits were tested, verifying that the proposed delay model can be applied to a wide range of logic circuits and process technologies. Analytical formulas were developed to predict the clock period variation in integrate circuit when the power supply is disturbed by an electromagnetic event in the third paper. The proposed formulas can be seen as a clock jitter model. The clock jitter due to the power supply variation can be estimated by the proposed propagation delay model. It is more meaningful, however, to estimate the clock period variation rather than the delay variation for one clock edge, because it is clock period which affects if a soft error will happen or not. Simulated results using Cadence Virtuoso demonstrate the validity and accuracy of the proposed approach. Three different types of noise were used to disturb the power supply voltage, verifying that the proposed model can be applied to a wide range of disturbance of power supply. Many electromagnetic events cause soft errors in ICs by momentarily disturbing the power supply voltage. The proposed model can be helpful for predicting and understanding the soft errors caused by these timing changes within the logic --Abstract, page iv

    Equalization of Interconnect Propagation Delay with Negative Group Delay Active Circuits

    No full text
    International audienceIn this paper, we propose a technique to compensate the propagation delay and losses in VLSI interconnects by using negative group delay (NGD) active circuits. This study uses the RLC models of interconnect lines currently considered in VLSI circuits. The circuit proposed here is based on a cell consisting of a Field Effect Transistor (FET) in parallel with a series RL passive network. We also describe the synthesis method to achieve simultaneousely a significant negative group delay and gain. Simulations allow us to first verify the performance of the NGD circuit and also show a restoration of the distorted signal shape as well as a reduction of propagation dela

    A Comparative Review on ALU using CMOS and GDI techniques for Power Dissipation and Propagation Delay

    Get PDF
    Arithmetic and Logic Circuits are to be designed with less power, compact size, less propagation delay in this fast growing era of technology. Arithmetic operations are indispensable and the basic functions for any high speed low power applications like digital signal processing, microprocessors, image processing, etc. Consumption of power is the major issue in designing these circuits. Also the number of transistors required is also the one of the issues in designing the circuits. To minimize the transistors required in designing the circuits and to reduce the power consumption of the circuits, the authors have referred some techniques to overcome these problems in this paper. By reviewing all these techniques, the authors try to implement the GDI technique to reduce the power consumption and transistors count or the area required to design the circuits

    Performance evaluation of the low-voltage CML D-latch topology

    Get PDF
    Abstract In this paper, the low-voltage CML D-latch topology is analyzed and compared to the traditional implementation to evaluate its speed potential and power efficiency, which are crucial aspects in current applications. To this end, an analytical delay model is first derived and then used to optimize its speed performance and understand its power-delay interdependence. The delay model, based on the approach proposed by Alioto and Palumbo (IEEE Trans. Circuits Systems I 46(11) (1999) 1330; IEEE Trans. Circuits and Systems II 47(5) (2000) 452), leads to simple expressions that are suitable for pencil-and-paper evaluations. The accuracy of the expressions obtained is tested by comparison to SPICE simulations, by using a bipolar process whose npn transistor has a transition frequency of 20 GHz. The delay expressions derived are used to design and compare the low-voltage and the traditional D-latch both in terms of delay and power-delay tradeoff, by considering a high-performance and a low-power consumption design target. The analytical comparison carried out is general, since it does not depend on the specific bipolar process considered. Analysis shows that the low-voltage D-latch topology does not necessarily allow for a power saving or a better power efficiency, and applications where this topology exhibits some advantage over the traditional implementation are identified.

    Models predicting the performance of IC component or PCB channel during electromagnetic interference

    Get PDF
    This dissertation is composed of three papers, which cover the prediction of the characteristics of jitter due to crosstalk and due to simultaneous switching noise, and covers susceptibility of delay locked loop (DLL) to electromagnetic interference. In the first paper, an improved tail-fit de-convolution method is proposed for characterizing the impact of deterministic jitter in the presence of random jitter. A Wiener filter de-convolution method is also presented for extracting the characteristics of crosstalk induced jitter from measurements of total jitter made when the crosstalk sources were and were not present. The proposed techniques are shown to work well both in simulations and in measurements of a high-speed link. In the second paper, methods are developed to predict the statistical distribution of timing jitter due to dynamic currents drawn by an integrated circuit (IC) and the resulting power supply noise on the PCB. Distribution of dynamic currents is found through vectorless methods. Results demonstrate the approach can rapidly determine the average and standard deviation of the power supply noise voltage and the peak jitter within 5~15% error, which is more than sufficient for predicting the performance impact on integrated circuits. In the third paper, a model is developed to predict the susceptibility of a DLL to electromagnetic noise on the power supply. With the proposed analytical noise transfer function, peak to peak jitter and cycle to cycle jitter at the DLL output can be estimated, which can be use to predict when soft failures will occur and to better understand how to fix these failures. Simulation and measurement results demonstrate the accuracy of the DLL delay model. --Abstract, page iv

    Effective instruction prefetching via fetch prestaging

    Get PDF
    As technological process shrinks and clock rate increases, instruction caches can no longer be accessed in one cycle. Alternatives are implementing smaller caches (with higher miss rate) or large caches with a pipelined access (with higher branch misprediction penalty). In both cases, the performance obtained is far from the obtained by an ideal large cache with one-cycle access. In this paper we present cache line guided prestaging (CLGP), a novel mechanism that overcomes the limitations of current instruction cache implementations. CLGP employs prefetching to charge future cache lines into a set of fast prestage buffers. These buffers are managed efficiently by the CLGP algorithm, trying to fetch from them as much as possible. Therefore, the number of fetches served by the main instruction cache is highly reduced, and so the negative impact of its access latency on the overall performance. With the best CLGP configuration using a 4 KB I-cache, speedups of 3.5% (at 0.09 /spl mu/m) and 12.5% (at 0.045 /spl mu/m) are obtained over an equivalent fetch directed prefetching configuration, and 39% (at 0.09 /spl mu/m) and 48% (at 0.045 /spl mu/m) over using a pipelined instruction cache without prefetching. Moreover, our results show that CLGP with a 2.5 KB of total cache budget can obtain a similar performance than using a 64 KB pipelined I-cache without prefetching, that is equivalent performance at 6.4X our hardware budget.Peer ReviewedPostprint (published version

    Modeling and design of high speed SRAM based memory chip

    Get PDF
    SRAM is used as Cache memory which is very fast and used to speed up the task of processor and memory interface. With improvements in VLSI technology, processor speeds have increased. The improvements in SRAM speed of operation with increased integration, bigger sizes, technology shrinking and power dissipation is required to match with improved processor. 2kb SRAM block is designed and tested for proper read and write operation. The single SRAM cell, the 32x32 memory array, along with the decoder circuit, the sense enable and write enable logic, are placed out. The different critical paths of the system, comprising of the row and the column decoder, the column mux and the read-write circuits are recognized and sized to meet the target specifications. Simple model for distributed interconnect delays, is introduced and verified by Cadence simulations, their necessity is demonstrated. The models for the delay of a SRAM are used to determine the array sizes for a SRAM. An analytical delay model is proposed to predict the block size for SRAM; proposed model is based on dynamic strategies for word line charging and bit line discharging. Novel Sense Amplifier (SA) circuit for 2kb SRAM is presented and analyzed in this work. Sense amplifier using decoupled latch with current controlled architecture is proposed and compared with Current controlled latch SA using 90nm CMOS technology. Delay and power dissipation in proposed SA is 21.5% and 18.5% less than that of the current controlled SA. Butterfly architecture that is central decoding scheme is used to make a 2kb block from 1kb, after simulations, the maximum operating frequency of the system was found to be 800MHz

    Direct Measures of Path Delays on Commercial FPGA Chips

    Full text link
    We present a general technique for measuring the propagation delay on the internal wires of FPGA chips. The measure is based on the comparison between the operating frequencies of two ring oscillators that differ only for the structure under test, that is included (or not) in the loop. Experimental results are presented for a device of the Xilinx XC4000 family

    Signal Phasing Strategies for Intersections with an Exclusive Bicycle Path

    Get PDF
    Over the past few years in the United States, there has been a gradual increase among many public agencies installing experimental exclusive bicycle traffic signals in conjunction with vehicular traffic signals. These signals, mostly found at intersections with protected two-way bicycle paths, may cause operational inefficiencies if unsatisfactory phasing strategies are used. The source of the issue stems from difficulty in developing a phasing strategy where simultaneous vehicular movement is to not come into conflict with any concurrent bicycle movement, particularly the vehicular right-turn movement adjacent to a bicycle path. Additionally, as a new signal type, there has been a lack of general guidelines on how to develop an efficient strategy that not only accommodate bicycle traffic signals, but also pedestrian signals. The goal of this research was to develop different strategies to accommodate bicycle traffic signals. The strategies are based on a case study intersection where a bicycle signal has been installed and is causing operational inefficiencies. Three strategies was developed for each split and lead-lag phasing using a combination of overlaps, dummy phases, and phase modifiers. Using the simulation software VISSIM, a model was developed based on the case study's intersection roadway geometry and signal timing. Each strategy is then implemented and evaluated for the capacity and delay of the right-turn lane by varying bicycle and pedestrian volumes. Analytical models based on Poisson distribution were developed for the capacity and delay of the right-turn lane and checked with simulation results for validation. The current intersection operation was also evaluated using current traffic volumes, and implementing all three split design strategies.The results from simulation showed low delays and high capacity for the vehicular right-turn lane at low bicycle and pedestrian volumes. Vice versa, higher delay and lower capacity for the vehicular right-turn lane at higher bicycle and pedestrian volumes resulted, which is expected. A reduction of the current operation's right-turn lane average delay was observed with the implementation of all three solutions. And finally, the results from simulation indicate that each strategy will be advantageous at different bicycle and pedestrian demands
    corecore