326,957 research outputs found

    The effect of rotation on the Rayleigh-Bénard stability threshold

    Get PDF
    The standard method used to solve the Rayleigh-Bénard linear stability problem for a rotating fluid leads to a complex expression which can only be evaluated numerically. Here the problem is solved by a different method similar to that used in a recent paper on the non-rotating case [A. Prosperetti, “A simple analytic approximation to the Rayleigh-Bénard stability threshold,” Phys. Fluids 23, 124101 (2011)10.1063/1.3662466]. In principle the method leads to an exact result which is not simpler than the standard one. Its value lies in the fact that it is possible to obtain from it an approximate explicit analytic expression for the dependence of the Rayleigh number on the wave number of the perturbation and the rate of rotation at marginal stability conditions. Where the error can be compared with exact results in the literature, it is found not to exceed a few percent over a very broad Taylor number range. The relative simplicity of the approach permits us, among others, to account for the effects of a finite thermal conductivity of the plates, which have not been studied befor

    Generic Nekhoroshev theory without small divisors

    Full text link
    In this article, we present a new approach of Nekhoroshev theory for a generic unperturbed Hamiltonian which completely avoids small divisors problems. The proof is an extension of a method introduced by P. Lochak which combines averaging along periodic orbits with simultaneous Diophantine approximation and uses geometric arguments designed by the second author to handle generic integrable Hamiltonians. This method allows to deal with generic non-analytic Hamiltonians and to obtain new results of generic stability around linearly stable tori

    Secular dynamics of a planar model of the Sun-Jupiter-Saturn-Uranus system; effective stability into the light of Kolmogorov and Nekhoroshev theories

    Full text link
    We investigate the long-time stability of the Sun-Jupiter-Saturn-Uranus system by considering a planar secular model, that can be regarded as a major refinement of the approach first introduced by Lagrange. Indeed, concerning the planetary orbital revolutions, we improve the classical circular approximation by replacing it with a solution that is invariant up to order two in the masses; therefore, we investigate the stability of the secular system for rather small values of the eccentricities. First, we explicitly construct a Kolmogorov normal form, so as to find an invariant KAM torus which approximates very well the secular orbits. Finally, we adapt the approach that is at basis of the analytic part of the Nekhoroshev's theorem, so as to show that there is a neighborhood of that torus for which the estimated stability time is larger than the lifetime of the Solar System. The size of such a neighborhood, compared with the uncertainties of the astronomical observations, is about ten times smaller.Comment: 31 pages, 2 figures. arXiv admin note: text overlap with arXiv:1010.260

    Variable-delay feedback control of unstable steady states in retarded time-delayed systems

    Full text link
    We study the stability of unstable steady states in scalar retarded time-delayed systems subjected to a variable-delay feedback control. The important aspect of such a control problem is that time-delayed systems are already infinite-dimensional before the delayed feedback control is turned on. When the frequency of the modulation is large compared to the system's dynamics, the analytic approach consists of relating the stability properties of the resulting variable-delay system with those of an analogous distributed delay system. Otherwise, the stability domains are obtained by a numerical integration of the linearized variable-delay system. The analysis shows that the control domains are significantly larger than those in the usual time-delayed feedback control, and that the complexity of the domain structure depends on the form and the frequency of the delay modulation.Comment: 13 pages, 8 figures, RevTeX, accepted for publication in Physical Review

    Ten years of the Analytic Perturbation Theory in QCD

    Get PDF
    The renormalization group method enables one to improve the properties of the QCD perturbative power series in the ultraviolet region. However, it ultimately leads to the unphysical singularities of observables in the infrared domain. The Analytic Perturbation Theory constitutes the next step of the improvement of perturbative expansions. Specifically, it involves additional analyticity requirement which is based on the causality principle and implemented in the K\"allen--Lehmann and Jost--Lehmann representations. Eventually, this approach eliminates spurious singularities of the perturbative power series and enhances the stability of the latter with respect to both higher loop corrections and the choice of the renormalization scheme. The paper contains an overview of the basic stages of the development of the Analytic Perturbation Theory in QCD, including its recent applications to the description of hadronic processes.Comment: 26 pages, 9 figures, to be published in Theor. Math. Phys. (2007
    corecore