128 research outputs found

    Few Cuts Meet Many Point Sets

    Full text link
    We study the problem of how to breakup many point sets in Rd\mathbb{R}^d into smaller parts using a few splitting (shared) hyperplanes. This problem is related to the classical Ham-Sandwich Theorem. We provide a logarithmic approximation to the optimal solution using the greedy algorithm for submodular optimization

    Scalable Bicriteria Algorithms for Non-Monotone Submodular Cover

    Full text link
    In this paper, we consider the optimization problem \scpl (\scp), which is to find a minimum cost subset of a ground set UU such that the value of a submodular function ff is above a threshold τ\tau. In contrast to most existing work on \scp, it is not assumed that ff is monotone. Two bicriteria approximation algorithms are presented for \scp that, for input parameter 0<ϵ<10 < \epsilon < 1, give O(1/ϵ2)O( 1 / \epsilon^2 ) ratio to the optimal cost and ensures the function ff is at least τ(1ϵ)/2\tau(1 - \epsilon)/2. A lower bound shows that under the value query model shows that no polynomial-time algorithm can ensure that ff is larger than τ/2\tau/2. Further, the algorithms presented are scalable to large data sets, processing the ground set in a stream. Similar algorithms developed for \scp also work for the related optimization problem of \smpl (\smp). Finally, the algorithms are demonstrated to be effective in experiments involving graph cut and data summarization functions

    Robust Fault Tolerant uncapacitated facility location

    Get PDF
    In the uncapacitated facility location problem, given a graph, a set of demands and opening costs, it is required to find a set of facilities R, so as to minimize the sum of the cost of opening the facilities in R and the cost of assigning all node demands to open facilities. This paper concerns the robust fault-tolerant version of the uncapacitated facility location problem (RFTFL). In this problem, one or more facilities might fail, and each demand should be supplied by the closest open facility that did not fail. It is required to find a set of facilities R, so as to minimize the sum of the cost of opening the facilities in R and the cost of assigning all node demands to open facilities that did not fail, after the failure of up to \alpha facilities. We present a polynomial time algorithm that yields a 6.5-approximation for this problem with at most one failure and a 1.5 + 7.5\alpha-approximation for the problem with at most \alpha > 1 failures. We also show that the RFTFL problem is NP-hard even on trees, and even in the case of a single failure

    Minimal Actuator Placement with Optimal Control Constraints

    Full text link
    We introduce the problem of minimal actuator placement in a linear control system so that a bound on the minimum control effort for a given state transfer is satisfied while controllability is ensured. We first show that this is an NP-hard problem following the recent work of Olshevsky. Next, we prove that this problem has a supermodular structure. Afterwards, we provide an efficient algorithm that approximates up to a multiplicative factor of O(logn), where n is the size of the multi-agent network, any optimal actuator set that meets the specified energy criterion. Moreover, we show that this is the best approximation factor one can achieve in polynomial-time for the worst case. Finally, we test this algorithm over large Erdos-Renyi random networks to further demonstrate its efficiency.Comment: This version includes all the omitted proofs from the one to appear in the American Control Conference (ACC) 2015 proceeding

    Approximating Source Location and Star Survivable Network Problems

    Full text link
    In Source Location (SL) problems the goal is to select a mini-mum cost source set SVS \subseteq V such that the connectivity (or flow) ψ(S,v)\psi(S,v) from SS to any node vv is at least the demand dvd_v of vv. In many SL problems ψ(S,v)=dv\psi(S,v)=d_v if vSv \in S, namely, the demand of nodes selected to SS is completely satisfied. In a node-connectivity variant suggested recently by Fukunaga, every node vv gets a "bonus" pvdvp_v \leq d_v if it is selected to SS. Fukunaga showed that for undirected graphs one can achieve ratio O(klnk)O(k \ln k) for his variant, where k=maxvVdvk=\max_{v \in V}d_v is the maximum demand. We improve this by achieving ratio \min\{p^*\lnk,k\}\cdot O(\ln (k/q^*)) for a more general version with node capacities, where p=maxvVpvp^*=\max_{v \in V} p_v is the maximum bonus and q=minvVqvq^*=\min_{v \in V} q_v is the minimum capacity. In particular, for the most natural case p=1p^*=1 considered by Fukunaga, we improve the ratio from O(klnk)O(k \ln k) to O(ln2k)O(\ln^2k). We also get ratio O(k)O(k) for the edge-connectivity version, for which no ratio that depends on kk only was known before. To derive these results, we consider a particular case of the Survivable Network (SN) problem when all edges of positive cost form a star. We give ratio O(min{lnn,ln2k})O(\min\{\ln n,\ln^2 k\}) for this variant, improving over the best ratio known for the general case O(k3lnn)O(k^3 \ln n) of Chuzhoy and Khanna
    corecore