13,913 research outputs found

    Cultural Learning in a Dynamic Environment: an Analysis of Both Fitness and Diversity in Populations of Neural Network Agents

    Get PDF
    Evolutionary learning is a learning model that can be described as the iterative Darwinian process of fitness-based selection and genetic transfer of information leading to populations of higher fitness. Cultural learning describes the process of information transfer between individuals in a population through non-genetic means. Cultural learning has been simulated by combining genetic algorithms and neural networks using a teacher/pupil scenario where highly fit individuals are selected as teachers and instruct the next generation. This paper examines the effects of cultural learning on the evolutionary process of a population of neural networks. In particular, the paper examines the genotypic and phenotypic diversity of a population as well as its fitness. Using these measurements, it is possible to examine the effects of cultural learning on the population's genetic makeup. Furthermore, the paper examines whether cultural learning provides a more robust learning mechanism in the face of environmental changes. Three benchmark tasks have been chosen as the evolutionary task for the population: the bit-parity problem, the game of tic-tac-toe and the game of connect-four. Experiments are conducted with populations employing evolutionary learning alone and populations combining evolutionary and cultural learning in an environment that changes dramatically.Cultural Learning, Dynamic Environments, Diversity, Multi-Agent Systems, Artificial Life

    Differential Evolution Approach to Detect Recent Admixture

    Full text link
    The genetic structure of human populations is extraordinarily complex and of fundamental importance to studies of anthropology, evolution, and medicine. As increasingly many individuals are of mixed origin, there is an unmet need for tools that can infer multiple origins. Misclassification of such individuals can lead to incorrect and costly misinterpretations of genomic data, primarily in disease studies and drug trials. We present an advanced tool to infer ancestry that can identify the biogeographic origins of highly mixed individuals. reAdmix is an online tool available at http://chcb.saban-chla.usc.edu/reAdmix/.Comment: presented at ISMB 2014, VariSI

    Novel Bayesian Networks for Genomic Prediction of Developmental Traits in Biomass Sorghum.

    Get PDF
    The ability to connect genetic information between traits over time allow Bayesian networks to offer a powerful probabilistic framework to construct genomic prediction models. In this study, we phenotyped a diversity panel of 869 biomass sorghum (Sorghum bicolor (L.) Moench) lines, which had been genotyped with 100,435 SNP markers, for plant height (PH) with biweekly measurements from 30 to 120 days after planting (DAP) and for end-of-season dry biomass yield (DBY) in four environments. We evaluated five genomic prediction models: Bayesian network (BN), Pleiotropic Bayesian network (PBN), Dynamic Bayesian network (DBN), multi-trait GBLUP (MTr-GBLUP), and multi-time GBLUP (MTi-GBLUP) models. In fivefold cross-validation, prediction accuracies ranged from 0.46 (PBN) to 0.49 (MTr-GBLUP) for DBY and from 0.47 (DBN, DAP120) to 0.75 (MTi-GBLUP, DAP60) for PH. Forward-chaining cross-validation further improved prediction accuracies of the DBN, MTi-GBLUP and MTr-GBLUP models for PH (training slice: 30-45 DAP) by 36.4-52.4% relative to the BN and PBN models. Coincidence indices (target: biomass, secondary: PH) and a coincidence index based on lines (PH time series) showed that the ranking of lines by PH changed minimally after 45 DAP. These results suggest a two-level indirect selection method for PH at harvest (first-level target trait) and DBY (second-level target trait) could be conducted earlier in the season based on ranking of lines by PH at 45 DAP (secondary trait). With the advance of high-throughput phenotyping technologies, our proposed two-level indirect selection framework could be valuable for enhancing genetic gain per unit of time when selecting on developmental traits

    ANTIDS: Self-Organized Ant-based Clustering Model for Intrusion Detection System

    Full text link
    Security of computers and the networks that connect them is increasingly becoming of great significance. Computer security is defined as the protection of computing systems against threats to confidentiality, integrity, and availability. There are two types of intruders: the external intruders who are unauthorized users of the machines they attack, and internal intruders, who have permission to access the system with some restrictions. Due to the fact that it is more and more improbable to a system administrator to recognize and manually intervene to stop an attack, there is an increasing recognition that ID systems should have a lot to earn on following its basic principles on the behavior of complex natural systems, namely in what refers to self-organization, allowing for a real distributed and collective perception of this phenomena. With that aim in mind, the present work presents a self-organized ant colony based intrusion detection system (ANTIDS) to detect intrusions in a network infrastructure. The performance is compared among conventional soft computing paradigms like Decision Trees, Support Vector Machines and Linear Genetic Programming to model fast, online and efficient intrusion detection systems.Comment: 13 pages, 3 figures, Swarm Intelligence and Patterns (SIP)- special track at WSTST 2005, Muroran, JAPA

    Genome-Wide Fine-Mapping Of Diabetic Traits

    Get PDF
    Type 2 diabetes results from both genes and the environment. Mapping genetic loci in animal models can help identify genes that are involved in type 2 diabetes to better understand the disease. Heterogeneous stock (HS) rats are derived from eight inbred founder strains and maintained in a breeding strategy that minimizes inbreeding. HS rats have a highly recombinant genome, which allows for rapid fine-mapping of complex traits genome-wide. However, this results in a complicated set of relationships between animals that is non-existent in traditional genetic mapping methods. To fine-map traits involved in type 2 diabetes, multiple diabetic phenotypes were collected in 1,038 HS male rats and these animals were genotyped using the Affymetrix 10K SNP array. Following ancestral haplotype reconstruction, a mixed modeling approach was used to identify genetic loci involved in two phenotypes suggestive of diabetes: fasting glucose and glucose area under the curve after a glucose tolerance test. Sibship was used as a random effect in the model to account for the complex family relationships. A genome-wide significant marker interval was detected on chromosome 11 for fasting glucose with a 95% confidence interval of 5.75 Mb. Genome-wide significant marker intervals were also detected on chromosomes 1,3, 10, and 13 for glucose area under the curve, with the average 95% confidence interval for these loci being only 3.15 Mb. A multilocus modeling technique involving resample model averaging was applied to the fasting glucose phenotype. This technique determines how frequently each locus is detected when resampling a portion of the original data-set, thus reducing potential false positives. Multilocus modeling results for fasting glucose coincided with the significant marker interval demonstrated in the mixed modeling approach. Both approaches are effective at detecting significant marker intervals that are expected to be involved in the phenotype of interest with a greater resolution over traditional methods

    The effect of genomic information on optimal contribution selection in livestock breeding programs

    Get PDF
    BACKGROUND: Long-term benefits in animal breeding programs require that increases in genetic merit be balanced with the need to maintain diversity (lost due to inbreeding). This can be achieved by using optimal contribution selection. The availability of high-density DNA marker information enables the incorporation of genomic data into optimal contribution selection but this raises the question about how this information affects the balance between genetic merit and diversity. METHODS: The effect of using genomic information in optimal contribution selection was examined based on simulated and real data on dairy bulls. We compared the genetic merit of selected animals at various levels of co-ancestry restrictions when using estimated breeding values based on parent average, genomic or progeny test information. Furthermore, we estimated the proportion of variation in estimated breeding values that is due to within-family differences. RESULTS: Optimal selection on genomic estimated breeding values increased genetic gain. Genetic merit was further increased using genomic rather than pedigree-based measures of co-ancestry under an inbreeding restriction policy. Using genomic instead of pedigree relationships to restrict inbreeding had a significant effect only when the population consisted of many large full-sib families; with a half-sib family structure, no difference was observed. In real data from dairy bulls, optimal contribution selection based on genomic estimated breeding values allowed for additional improvements in genetic merit at low to moderate inbreeding levels. Genomic estimated breeding values were more accurate and showed more within-family variation than parent average breeding values; for genomic estimated breeding values, 30 to 40% of the variation was due to within-family differences. Finally, there was no difference between constraining inbreeding via pedigree or genomic relationships in the real data. CONCLUSIONS: The use of genomic estimated breeding values increased genetic gain in optimal contribution selection. Genomic estimated breeding values were more accurate and showed more within-family variation, which led to higher genetic gains for the same restriction on inbreeding. Using genomic relationships to restrict inbreeding provided no additional gain, except in the case of very large full-sib families
    • …
    corecore