4,367 research outputs found

    Astrobiological Complexity with Probabilistic Cellular Automata

    Full text link
    Search for extraterrestrial life and intelligence constitutes one of the major endeavors in science, but has yet been quantitatively modeled only rarely and in a cursory and superficial fashion. We argue that probabilistic cellular automata (PCA) represent the best quantitative framework for modeling astrobiological history of the Milky Way and its Galactic Habitable Zone. The relevant astrobiological parameters are to be modeled as the elements of the input probability matrix for the PCA kernel. With the underlying simplicity of the cellular automata constructs, this approach enables a quick analysis of large and ambiguous input parameters' space. We perform a simple clustering analysis of typical astrobiological histories and discuss the relevant boundary conditions of practical importance for planning and guiding actual empirical astrobiological and SETI projects. In addition to showing how the present framework is adaptable to more complex situations and updated observational databases from current and near-future space missions, we demonstrate how numerical results could offer a cautious rationale for continuation of practical SETI searches.Comment: 37 pages, 11 figures, 2 tables; added journal reference belo

    Integrating remote sensing, GIS and dynamic models for landscape-level simulation of forest insect disturbance

    Get PDF
    Cellular automata (CA) is a powerful tool for modeling the evolution of macroscopic scale phenomena as it couples time, space, and variables together while remaining in a simplified form. However, such application has remained challenging in forest insect epidemics due to the highly dynamic nature of insect behavior. Recent advances in temporal trajectory-based image analysis offer an alternative way to obtain high-frequency model calibration data. In this study, we propose an insect-CA modeling framework that integrates cellular automata, remote sensing, and Geographic Information System to understand the insect ecological processes, and tested it with measured data of mountain pine beetle (MPB) in the Rocky Mountains. The overall accuracy of the predicted MPB mortality pattern in the test years ranged from 88% to 94%, which illuminates its effectiveness in modeling forest insect dynamics. We further conducted sensitivity analysis to examine responses of model performance to various parameter settings. In our case, the ensemble random forest algorithm outperforms the traditional linear regression in constructing the suitability surface. Small neighborhood size is more effective in simulating the MPB movement behavior, indicating that short-distance is the dominating dispersal mode of MPB. The introduction of a stochastic perturbation component did not improve the model performance after testing a broad range of randomness degree, reflecting a relative compact dispersal pattern rather than isolated outbreaks. We conclude that CA with remote sensing observation is useful for landscape insect movement analyses;however, consideration of several key parameters is critical in the modeling process and should be more thoroughly investigated in future work

    An optimised cellular automata model based on adaptive genetic algorithm for urban growth simulation

    Get PDF
    This paper presents an improved cellular automata (CA) model optimized using an adaptive genetic algorithm (AGA) to simulate the spatiooral process of urban growth. The AGA technique can be used to optimize the transition rules of the CA model defined through conventional methods such as logistic regression approach, resulting in higher simulation efficiency and improved results. Application of the AGA-CA model in Shanghai's Jiading District, Eastern China demonstrates that the model was able to generate reasonable representation of urban growth even with limited input data in defining its transition rules. The research shows that AGA technique can be integrated within a conventional CA based urban simulation model to improve human understanding on urban dynamics

    A Spatial Agent-Based Model of N-Person Prisoner's Dilemma Cooperation in a Socio-Geographic Community

    Get PDF
    The purpose of this paper is to present a spatial agent-based model of N-person prisoner's dilemma that is designed to simulate the collective communication and cooperation within a socio-geographic community. Based on a tight coupling of REPAST and a vector Geographic Information System, the model simulates the emergence of cooperation from the mobility behaviors and interaction strategies of citizen agents. To approximate human behavior, the agents are set as stochastic learning automata with Pavlovian personalities and attitudes. A review of the theory of the standard prisoner's dilemma, the iterated prisoner's dilemma, and the N-person prisoner's dilemma is given as well as an overview of the generic architecture of the agent-based model. The capabilities of the spatial N-person prisoner's dilemma component are demonstrated with several scenario simulation runs for varied initial cooperation percentages and mobility dynamics. Experimental results revealed that agent mobility and context preservation bring qualitatively different effects to the evolution of cooperative behavior in an analyzed spatial environment.Agent Based Modeling, Cooperation, Prisoners Dilemma, Spatial Interaction Model, Spatially Structured Social Dilemma, Geographic Information Systems
    • …
    corecore