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Abstract: We present in this paper the development and agijun of a cellular automata
(CA) model that uses irregular cells for simulatiagd use change instead of the common
regular cells based on the pixels of remote semsgeas. The use of irregular cells combines
urban form with reliable demographic, socio-ecormgnaind building data that are usually
available for irregular census blocks. The calibratof the model is made through a
procedure based on a particle swarm algorithmapamizes a measure of agreement derived
from thekappaindex for contingency matrixes. The model was igpopfor simulating urban
change in a small municipality in Portugal thatisegred high growth rates during the 1990s.
Simulation results indicate the model’s ability fmapturing land use change in small urban

areas.

Keywords: Urban Change, Cellular Automata, Irregular Céimall Urban Areas, Particle

Swarm.
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1 INTRODUCTION

The problems generated by the rapid growth of uréig@as raise important issues to the
planning process. These issues are related notvatiythe motives behind past evolution,
but also with the definition of new land use pa@agicapable of responding to the needs of the
present and to control the evolution of urban areasards a sustainable future. The
complexity of the problems is such that there avesimple ways to achieve solutions, nor
these solutions can be based on a single approhehcomprehensive nature of the planning
process is simultaneously a strength, because rivede from the consideration of all
ingredients of the problems (physical, demograpéemnomic, social, etc.), and a potential
weakness, because the problems become more andcompgex as the natural evolution of
societies takes place, especially in the curreobajlzed context, demanding from planners

new levels of commitment and accuracy in their aese and practice.

The complex problems involved in comprehensive mirpnning can be advantageously
addressed through models capable of capturingehavior of urban areas and forecast their
evolution. Cellular automata (CA) have receivedreayy deal of attention from researchers
among the wide range of modeling techniques tretiaually applied to urban simulation. In
a concise definition “an automaton is a processieghanism with characteristics that change
over time based on its internal characteristicéesriand external input” (Benenson and
Torrens, 2004). CA are based on a discrete sqdatias units called cells that together form a
cell space. Each cell takes a given (cell) statmfa finite set of states. Time is considered in
a discrete manner. Each cell, which works as aonaation, then operates state changes over
time according to a finite set of transition rwesich can be of various types (deterministic or
stochastic, unconstrained or constrained). Statesitiion is the result of the application of

these rules to each cell considering the neighbareils.



10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

In this paper we present the development and ajait of a CA model based on irregular
cells, a type of model that was used only in a $&wdies reported in the literature (the first
ones are due to Semboloni, 2000 and O'Sullivan120G@A models commonly use regular
cells obtained from satellite images (pixels), vhimay not represent well the spatial
structure of the territory because their form isyaronstrained by resolution and they only
hold information on land use (obtained from remsé@sing using automatic classification
methods). Our model uses irregular cells basedeosus blocks — the smallest spatial units
used by national statistics systems — to combimen fwith reliable data on land use,

demographics, and buildings. The model was apjhe¢de study of land use change in small
urban areas. The CA models dealt with in the litesa(at least in leading journals) refer to
metropolitan or large urban areas (illustrativeregbes include Clarke et al, 1997, Silva and
Clarke, 2002, and White and Engelen, 1993). Howesarall and mid-size cities face

noteworthy growth problems. Indeed, a very sigaificshare of urban growth is taking place
in areas with population below 500,000 (Cohen, 200¢his is in part due to the

counter-urbanization trends that are being obseimedhany regions of the world and,

especially, in the developed countries (Chesiretdaygl 1985; 1989; Ferras, 2007).

The paper is divided into three main sections, plfisal section for conclusions. In Section 2
a brief literature overview is presented, wherekiye research on CA and their applications is
introduced. Section 3 is dedicated to the presentaf the CA model we have developed in
our study. In Section 4 we describe the applicatibthe model to the small municipality of

Condeixa-a-Nova, in central Portugal, and provideracast analysis of urban growth in this
municipality for two ten-year periods. Finally, $ea 5 is dedicated to the discussion of

results and to the presentation of some conclusibost the study reported in this paper.
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2 LITERATURE OVERVIEW

The concept of cellular automaton was introducetha late 1940s by John von Neumann
and Stanislaw Ulam, who were facing (independenthg problem of devising sets of
mathematical rules for simulating the self-reprdgucand evolution of biological systems.
The spatial nature of CA led Waldo Tobler to piandeeir application to urban studies
(Tobler, 1979). This occurred shortly after Douglase published his paper about the fallacy
of large-scale modeling (Lee, 1973), which damagedsiderably the confidence on the
application of models to urban studies, reducirmgititensity of research in the field. Until the
1990s, the object of planning was re-centered oortsterm objectives, on immediate
solutions to problems, rather than on the accotmplent of ambitious long-term goals,
characteristic of large-scale planning. Despits,teimulation models gained a new breath in
this period, thanks to the advent of faster and &egensive computer hardware, along with
the development of more powerful database managetmels. Couclelis followed Tobler on
the exploration of the concept of CA and produdeairtfirst applications to urban studies
(Couclelis, 1985; 1988; 1997). Other authors, Begty and Xie (1994; 1997) and White and
Engelen (1993; 1997) further explored the conoexending it with new theoretical features,
whereas Semboloni (1991) and Webster and Wu (198220b) tested CA as a tool for the
evaluation of land use policies. Some of the mogiartant evolutions of CA involve their
combination with various other techniques. The capaof GIS for dealing with large
datasets and for providing quality visualization lei and Yeh (2000), Wu and Webster
(2000), and Stephens et al (2007) to couple CA @Wit8. Fractal theory was used to assess
the quality of CA simulation by comparison of siméld and observed fractal measures of
real-world cities (Barredo et al, 2003; Jeneretig A/u, 2001; White and Engelen, 1993). CA
was combined with multicriteria evaluation to detere transition rules (Wu and Webster,

1998). Neural networks were coupled with CA tolmalie modeling parameters (Almeida et
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al, 2008; Li and Yeh, 2001; Wu, 2002). The inteigiratof CA with multi-agent simulation
(MAS) is at the origin of the concept of geographitomata systems proposed in Benenson
and Torrens (2004) and is currently a major subpéatesearch (Diappi and Bolchi, 2006;

2008; Vancheri et al, 2008).

CA have been applied to a series of real worldistudround the world. SLEUTH is a CA
model used in the simulation of historical land eselution in the San Francisco Bay Area
(Clarke et al, 1997) which has been largely appliedldwide (Jantz et al, 2004; Silva and
Clarke, 2002; Xian and Crane, 2005). Another CA etathder intensive use is MOLAND,
which has been widely applied to land use simutatiacross the European Union and also in
developing countries (Barredo et al, 2003; Barradd Demicheli, 2003; Uhel et al, 2006).
Ward et al (2000; 2003) developed a CA model calipigh a macro-scale spatial interaction
model for the Gold Coast in Australia. Jenerettel &iu (2001) developed a coupled
CAl/genetic algorithm model to evaluate long ternstdrical urbanization in Phoenix,

Arizona.

The use of irregular cells in CA models is veryited, but is gaining importance in recent
years. Indeed, remote sensing images are commaely as input data to CA models after
pre-processing with automatic land use classificatlgorithms, making them easy to use
and providing different degrees of spatial resolutiThere are only few exceptions to the use
of regular cells. Semboloni (2000) and Shi and P&@P0) used Voronoi polygons to
develop CA models for simulating urban growth. dligan (2001a; 2001b) combined CA
and graph theory to generate sets of neighborhoal@-drregular cells. Vandergust al
(2000) defined irregular “sectors” to study intiscmigration patterns. Stevens and
Dragicevic (2007) and Steveatal (2007) coupled a high resolution irregular @#h a GIS

for modeling neighborhood expansion at the paeetllwith GIS, thus having a vector space

with geometric features and making use of databapabilities provided by GIS. Moreno et
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al (2008, 2009) used vector irregular objects feliscthat can change shape during time,
depending on the interactions with an extendedoketeighbors chosen according to their
influence on state transition. This vector baseddeAls with geographic features of any kind,
in particular with irregular polygons that simulatal-world features, being census blocks
one possibility. Vliet et al (2009) implemented ariable grid neighborhood to incorporate
long distance land use interaction by considerihtha land use available for computing the

potential for state transition.

In general, CA applications are focused on larggesmodels (regional or metropolitan). To
the best of our knowledge, there is no previouskweported in leading scientific journals on

the use of CA for small urban areas.

3 MODEL PRESENTATION

The CA model presented in this paper has a sintpletare that derives from the classical
formulation of CA with the consideration of constied land use demand, following the
concept introduced by White and Engelen (1993). muzlel operates over an irregular
cellular fabric obtained from census blocks. Ceédites are classified into a finite set of
aggregated classes of land use. Land use intemactiake place within a variable
neighborhood that is determined through model catidn. Transition rules incorporate
planning regulations and simulate land use chamgedon a composite transition potential
that takes into account cell accessibility, lané ggitability, and neighborhood interactions
within the cell neighborhood. The time step cardbéned by the user. Land use demand is
determined through the evolution of population @ngployment densities over time. These

topics are explored below in separate subsections.

The model was implemented from scratch using tlsaidMiBasic 6 programming language to

run on Microsoft Windows.



10

11

12

13

14

15

16

17

18

19

20

21

22

23

3.1 Cell Structure

The first component of a CA model is the cell stuoe. Our model is based on the use of
irregular cells. The purpose is to allow individalls to simulate irregular census blocks.
Census blocks hold structured and reliable infoilonabn demographics and buildings, and
are drawn considering urban form (streets, urbarkspaproperty walls/limits, etc). By

combining data and form, they are particularly ediifor being used as the cells of a CA

model.

3.2 Cell States

Another important component of a CA model is thedfecell states. The number of states
can be as small as “housing” or “farm” as a binstate (Caruso et al, 2007) or extremely
large as in the MOLAND model (Barredo et al, 2008)our model, we classify land use into
Six aggregate states (or land use classes), whelntended to represent the whole set of
urban land uses: urban low density (UL), urban hagmsity (UH); industry (1), urban
expansion (XU), industrial expansion (XI), and Higrestricted uses (R) .States UL and UH
are comprehensive classes of urban land uses/ridgf@enly on building density. They
include residential areas, shopping and office areaixed-uses areas, streets, and open
spaces. States XU and XI represent non-occupiexs avbere urban and industrial land uses
can be located, respectively. Cells classifiedng state but R are identified as active cells:
these cells can change state under a given sevrmafitons. Cells classified as R, which
correspond to land classified as agricultural neseecological preservation area, etc., are
identified as inactive cells: they can influenceadause dynamics but their state cannot

change.

3.3 Neighborhood
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The third component of a CA model is the neighbothdhat is, the extent to which land use
interactions occur. The concept of neighborhoaa key element for CA as it determines the
spatial extent of interactions, embodying Toblditst law of geography: “everything is
related to everything else, but near things areemelated than distant things” (Tobler, 1970,
p. 236). Instead of using traditional von NeumamnVimore neighborhoods, or combined
settings of these two (Benenson and Torrens, 2004), chose to employ circular
neighborhoods. This choice has also been madeveraeother CA models: it is common to
consider the cells located within a given radiusvery direction (Barredo et al, 2003; White
and Engelen, 1993). In these cases, the numbeglisfis predetermined considering, in an
arbitrary way, a distance perceived as appropfiatedefining neighborhood size. In our
model, we implemented a variable circular neighbothwhere the radius is a calibrated
parameterg. Its value influences, and is influenced by, la# bther parameters of the model.
Neighborhood perception is different for differamban areas. Therefore, any model that
aims to capture land use interactions in a giveritaey gains by being able to identify how

far these land use interactions really take place.

3.4 Transition Rules

The fourth component of a CA model is the set ahsition rules that are behind the
dynamics of urban areas. In our model, they areesged through a potential which reflects
the propensity/capacity of each cell to changeestateach time step. This potential is a
weighted value of land use suitability, accesdiiland neighborhood effects given by the

following expression:
Pi,sz(VPxSi,s"'/prA+9pri,S)xf,DiDC,SDS (1)

where, for each cellfrom the set of cell€, and for each statefrom the set of states P; s is

the transition potential for staseof celli, S is the land use suitability value for statef cell



10

11

12

13

14

15

16

17

18

19

20

21

22

i, A is the accessibility value of call N;s is the neighborhood effect for stageof cell i
considering its neighborhodd;, ve is the calibration parameter for land use suitigbifp is
the calibration parameter for accessibility, afid is the calibration parameter for the

neighborhood effect.

The first element of the potential is cell suitdpjlwhich is considered as a binary value that
is equal to 1 if the cell is suitable for a givamdl use and 0 otherwise, that$s;= 1 if celli

is suitable for stats, S = 0 otherwise. The choice for a binary variableeisted to the fact
that suitability and zoning were considered as single input. It is assumed that planning
regulations define suitable and unsuitable landsule each cell, according with a
predetermined zoning. Therefore, if one cell issified as suitable for a given land use then

it is assumed as being capable of attracting #rat Lse.

The next element is accessibility. It is assessedidering travel times between cell centroids
over the road network. The network is classifiechiararchical levels — e.g., main roads,
secondary roads, and local roads — according wil capacity and legal speed limits. The

value of accessibility for ceil| A, is assessed through the following expression:

i(r)
Zf(T;)

jeC

A =1- Vi eC )

wheref (T';) is an impedance function (typically an exponéritiaction or a power function)

of an aggregate measure of travel time given by
K= apXT o+ fuXTy, +9,XT [, VI EC (3)

andT,; ¢ is the travel time from cellto the municipality’s main townl;\ is the travel time
from celli to its civil parish (or district) main villagd;, is the travel time from cellto the

closest industrial site located in the municipalégdaa, fa, andya are calibration parameters.
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Accessibility is based on the assessment of thgipity of a cell to the urban functions
available at the municipality’s main town and theilcparish main village, and to the

employments offered not only in urban areas but misndustrial sites.

The last element of the potential is the neighbodheffect,N;s. It is considered as an
aggregate value of the interactiddg;, between the states (or land useghdr, located in

two neighboring cells and;. It is calculated through the following expression

Nis= Y Nigj 0i0CV; ={jOC:dy <}s,r0S (4)
iov;
where the neighborhood effeldts is the sum of interaction; s between statgin celli and
all the states of neighboring celjs that belong to neighborhoo¥; considering the
neighborhood distance parametefwhich means that attraction or repulsion will yote
taken into account if the cell is located withire theighborhood/;) andd;; is the distance

between cells and;.

For each pair of states, these interactiNng, were considered to be a linear function of the
distance between the cells, as depicted in Figur€éhg value of the function is 1 if the
interaction between the states of two cells is ati@rized by maximum attraction, 0O if they
do not interact, and -1 if the interaction is cliteazed by maximum repulsion. This value is
obtained as follows:

d .
— 1) max H H max
Nigjr = 1-—dsmrax x NS,V jEC,s,r €5 if dy =dJ} 5)

0; otherwise

max

whereNs, " is the maximum value for the iteration (the ordnat the origin) between cells

max

in states and in state, ds IS the distance for which the interaction is zero.

Insert Figure 1 approximately here

10
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The transition potential of a cell is increasedaogiven value that depends on the distance
between this cell and each neighboring cell, ifrtetates attract themselves. In contrast, the
potential is decreased of a given value if theatest repulse themselves. For example,
according to the graphic depicted in Figure 1(g)am of cells classified in states that show
mutual attraction, say UL and UH, would have tlpaitentials increased of about 0.4 (prior to
normalization) for a distance between the cell®.8f kilometers. Considering the opposite
relationship, depicted in Figure 1(b), a pair obteells classified in states that induce mutual
repulsion, say XU and |, would have their potentieduced of about 0.3 (again, prior to
normalization) for a distance between the cell&.6fkilometer. It is important to note that all
the six states influence the potential of cells tehar their states are. However, only the five
active states are influenced by the other stat#sb(a R, where construction is highly
restricted). This neighborhood effect is a relaglip that must be determined for each pair of
states considered in the analysis of urban chahge.fact that these relationships are very
difficult to assess, as they depend on severakdependent factors such as land value,
housing demand, public facility location, amongesaV others, suggested the consideration of

the two points that define thenNs,"® andds " — as calibrations parameters.

Finally, the stochastic perturbatiaf,is calculated through the following expression:

& =1+[~log(p)] (6)

wherep is a random variable uniformly distributed in theterval 10,1[ ando is a control
parameter for the adjustment of the size of théupeation (White and Engelen, 1993). This
term has a highly distorted distribution so thatsinealues are near one and much larger
values occur only infrequently. The main purpos#oisntroduce the stochastic behavior of

agents in the transition potential.

The transition potential is calculated for evemtstand cell, being the final cell potential the

11
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highest value for the set of states. For companmoposes the potential must be normalized,

being its value given by:

P = I:)is . i
 =max ——,1 JC;s0S  (7)

=
q91S

3.5 Time

The last key component of a CA model is time. Ugudhe time step used in CA models is
one year long. Our model can use time steps of foreg,or ten years. The definition of the
time step is a user decision based on the casésthatng modeled. It can be connected with
data availability, as the use of a time step simita the censuses time lag frames CA
dynamics with consistent census data. Also, itlmamelated with the rate at which a given
cell changes state. This rate depends in parti@fldhe planning environment — in highly

regulated systems these changes are relativelynmoo.

3.6 Land use demand

Our model deals with land use demand differentiymfrclassic CA models. Two irregular
cells most probably have different areas, withed#ht values for population or employment
as well as for building density, supplying the lars® market with different amounts of land.
If demand was assessed through the number oftbalischange state (as is usually the case
with CA models), the sum of the newly occupied aresuld not match the increase in
population or employment that generated the demdmubrefore, our model allocates
population or employment considering given thregldbr their densities (that are model
inputs) in order to guarantee that it is able muate the observed value of land consumption

for every state.

12
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The demand for urban land uses (UL and UH) dependsree main variables: the variation
of population, the variation of household size, dhd variation of building density. The
increase in the number of households (single perssimgle parent families) and the
subsequent reduction of the average size of holdslmplies the use of more space for
housing, thus increasing land use demand. At tmeesame, building density tends to
decrease over the years because of increasingigrexiequirements of public facilities and
public space. The best way to relate these vagabléhrough population density. The model
calculates the increase of population during thieremce period and distributes that
population over the territory, considering threslsobf population densities. Land use demand
is the surface of land that is necessary to accaaieothis increase in population. The
thresholds are calculated for different levels aflding density, for different moments in

time.

Similarly, the demand for the industrial land ugg i§ modeled based on employment

densities, considering observed values of emploympenarea for the existing industrial sites.

4 CASE STUDY

The CA model presented in the previous section teated on a case study involving
Condeixa-a-Nova, a small municipality located néaimbra, in central Portugal (Figure 2).
This municipality had very high population growttes in the 1991-2001 (the™ highest in

mainland Portugal outside the metropolitan areakisifon and Porto). In this section, we
present the study area and the dataset creatdédef@pplication of the CA model. We also
present the procedure implemented for calibratihg tmodel, which is based on an
optimization technique called particle swarm andtbe use of contingency matrices for
performance assessment. Finally, we present thdtsefor a forecast analysis of urban

change in Condeixa-a-Nova for two ten-year periods.

13
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Insert Figure 2 approximately here

4.1 Characterization of the Study Area

The municipality of Condeixa-a-Nova has around 1&fuare kilometers and 15000
inhabitants (INE, 2001). The population growth réde the municipality in the 1991-2001
period was 17.8 percent. This value is particulegiparkable because the natural growth rate
(birth rate minus mortality rate) was -3.7 percemér the same period. Built areas had an
even more impressive 48 percent increase. In 20€detareas amounted to about 10 percent

of the municipality.

The municipality is headed by the town of Condeaxllova and has several smaller villages.
The majority of the urban areas are located in nloeth and western sectors of the
municipality. This part of the municipality is rékely flat and mostly covered with
agricultural land uses (vegetables, orchards, args; and olive groves). These two sectors
also concentrate most of the existing urban expanaieas. The south and southeast sectors
of the municipality are hilly to mountainous, wabhscattered urban occupation surrounded by

scrubland and forest, a large portion of whichsifeed as ecological preservation area.

4.2 Dataset

Case study data were pre-processed to create setlatahe format that is supported by the
model. There were two main data sources: demogragid building data by census block
obtained from the national censuses of 1991 and;28f land use classification obtained for
the same years from municipal master plans. Ireegeells were drawn from the intersection
of census blocks (obtained from the geographictdl@dses that support both censuses) with
the areas inside the urban limits defined by mpaicplanning in 1991 and in 2001 (as seen

in detail in Figure 3). Land use maps for these y@ars are depicted in Figure 4.

14
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Insert Figure 3 approximately here

Insert Figure 4 approximately here

Land use was classified into the six classes @tatgjuired by the model. Urban land use
demand was defined by population densities threshaletermined considering the average
household size and dwellings per hectare by the tifheach census. This variation is a
consequence of the reduction of population demgityng the inter-censuses period as a result
of the two factors discussed previously: (1) therdase of the average size of households;
and (2) the inclusion of much more public faciktiand public space in urban areas. The

values used for calculating the thresholds arecpitesl in Table 1.

Insert Table 1 approximately here

From 1991 to 2001 the variation of total area ftates UH was significant, achieving an
impressive 351 percent, while state UL registerednall increase of 2 percent. This
difference between UH and UL states is related téhchange in population density over the
period: land classified as UL in 1991 was re-ckesias UH in 2001 due to the change in the

population density threshold mentioned above.

Accessibility was calculated using a power impeéafunction with exponent equal to 1.0.
This type of function explains traffic flows in tHgoimbra area (where Condeixa-a-Nova is

located) extremely well.

The time step chosen was ten years, the intervalde® census and between revisions of
municipal master plansyhe fact that land use is highly regulated in Rgatu(particularly
since 1990), making state changes for a giveniokkquent, led us to discard the use of

shorter time steps.

4.3 Model Calibration

15
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4.3.1 Calibration Approach

CA models need to be calibrated in order to enthedest possible adjustment between the
simulated outcome and the reality that is being @lextl Calibration can be achieved through
two main approaches: (1) performing a sensitivitalgsis for the value of each calibration
parameter considering the other parameters fixe@2)orunning an optimization procedure
for searching the set of calibration parameters dipimize some fithess function. The first
approach is based on a visual comparison of aemtermap with a simulation map obtained
with some initial set of parameters. The sensitiahalysis is performed to evaluate how
much each parameter varies when the other parasraetefixed and to iteratively adjust their
values until the simulation map and the refereneg® mmeet some similarity criteria. This
calibration approach becomes increasingly diffidoltapply as the number of parameters

increases.

In our case, the number of calibration parametersonsiderably high: one neighborhood
distance parametep)( three transition potential parameteys, (vp, and fp), the stochastic
parameter ), and three accessibility parametess, (64, andya), and 40 neighborhood
parametersNs " andds /"® for each pair of cell states, except cell staten® itself). This
means a total of 48 calibration parameters. Thangty suggests the use of an optimization
approach to calibrate the model — that is, theiegpbn of automatic rules to determine the

best possible value for a fitness function exprestie goodness of fit of the model.

The fitness function we used in this case studgaised on the contingency matrix for the
reference and simulation maps (Couto, 2003). Timirogency matrix for two class maps is a
matrix where each elementy, expresses the number of cells classified in sate the

simulation map which are in statén the reference map.

Several comparison measures regarding the degragreément between two class maps can

16
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be extracted from a contingency matrix. The mostusne is thé&appaindex, which value

gets closer to one as the similarity between tleerhaps increases.

For our case study, we used a modified versiolm@kappaindex to avoid the distortion that
would have been produced if states that cannotgakiein the urban dynamics — that is, state
R (highly restricted uses) — were included in tbenputation. The consideration of cells in
this state would be misleading by producing a largéhough meaningless — agreement

between simulation and reference maps.

The modifiedkappaindex, kmoq that we used as fitness function was calculasedlbows:

T —z[z my xS,
s  iB\j® o

J, S =s/R} (8)

iC5*\ 5 j5*

Kmod =
“Z‘Z[Z m; x ijiJ

wheren is the total number of elements in the contingemeyrix andm; is a generic element

of the matrix.

To optimize the fitness function we used a receptintzation algorithm called particle
swarm (from now on referred to as PS) which isadlé for dealing with a large number of
parameters. PS is inspired on the flight of bimtkis, which move to some goal starting from
an entirely random distribution in space and theganize themselves behind a leader in a
stable flight formation where the relative positind velocity of birds is maintained through
time. Analogously, the search of the solution sp@he possible flight formations) for the
optimum set of calibration parameters is made wittiie PS algorithm by adjusting the
trajectories of sets of calibration parametersechlparticles (the birds). Details on the PS

algorithm can be found on Kennedy (1997) and Panglog and Vrahatis (2002).

In our case, the parameters are calibrated by mgntie CA model embedded on a PS
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algorithm, as depicted in Figure 5. We start witliveen number of particles — each patrticle is
a set of 48 parameters — with random positionsvahatities, and calculate through a CA run
the value of the fitness functiokfg for each particle. Then, in successive iterations
update the position and velocity of each partideoading to a pair of rules that operate over
their previous position and velocity, and the poerg position and velocity of the particle with
the highest fitness function (swarm leader). Theatipg process is carried out until the value

of the fitness function no longer improves.

Insert Figure 5 approximately here

In Figure 6 we show how the values of three pararsaif the modeldy, Sa, andya) evolve
through the application of the PS algorithm. Itiyiathey vary widely and then progressively

converge, more or less quickly, to some final, IstaBlue.

Insert Figure 6 approximately here

4.3.2 Calibration results

The CA model was calibrated using the dataset$964 and 2001. A group of 60 particles of
48 parameters was randomly generated consideraggiple ranges for every parameter, and
used in the CA runs of each PS iteration. The #lyorwas set to stop when the fithess
function did not improve more than 0.1 percentive fconsecutive iterations. The number of

particles was chosen after Trelea (2003).

The fitness function reached a fingloq of 0.621, with an improvement of 184 percent when
compared to the best run of the initial group of@GMA runs. The value fokappawas 0.774,
which shows that the use of this commonly-used Xnotestead ofkno.g Would overrate
simulation quality by 24.7%. The simulation lanceusap is depicted in Figure 4c. Rather

than capturing the trend towards urban concentratisserved in Condeixa-a-Nova (Figure
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4b), the model favored the emergence of surroundibgn centers. It was however capable

of identifying areas of change, such as those atdatby the circles displayed on Figure 7.

Insert Figure 7 approximately here

The final values obtained through the PS algorittemthe set of calibration parameters
matched what would be expected. The neighborhostartie parametep)(was set to 4
kilometers. The values obtained for the accessihiiarameters were 0.445 feg, 0.238 for

Ba, and 0.568 fopa, which means that the model favored accessiliditthe main industrial
site. Regarding the transition potential, the valabtained for the parameters were 0.341 for
vp, 0.130 foryp, and 0.933 fordp, which means that the model identified neighbochoo
interactions as the key component of the poteniibk relationships corresponding to the
neighborhood effect parameters for four pairs dif states are depicted in Figure 8. Finally,
the value obtained for the stochastic parametevas 1.229, which matches the results

obtained by White et al (1997) for a good degrepretlictability.

Insert Figure 8 approximately here

The model was calibrated using tkgg for a contingency matrix expressed in terms of the
number of cells (Table 2a). In general, the valfethe conditionakm.q Which measure the
agreement between simulation and reference mapa &pecific state, are in line with the
global agreement obtained for the case study (0. Hdwever, the conditiond,oq for the

UH state is considerably lower. The difference leswthe values for UL population density
in 1991 and UH population density in 2001 is vergali, which may have had some
influence on the final result, by reducing the aayaof cells in state UL to receive
population when slightly larger amounts of populativere being allocated to cells with the

same size in state UH.

It is interesting to compare the contingency magéxpressed in terms of the area of cells

19



10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

(Table 2b) with the previous matrix. The valuekgiqis slightly higher (0.643) when the area
of cells is considered, and the same happens Wwehglobal agreement (0.778). This may
indicate that the model could be better calibratgith cell areas instead of cell counts. The
values of the conditionddyoq are similar or higher for all the states (with #weception of

state UH). This reinforces the idea of using cedaa for calculatingmog

Insert Table 2 approximately here

The procedure used to define cells may have redtleedjuality of calibration due to an
inappropriate problem definition. It was stricthaded on the intersection of census blocks
with the areas inside the urban limits. In largebam areas census blocks are small and
originated small cells whereas some smaller vikagee located almost completely within a
single large census block, which originated largdsc This has led to a wide range of
variation in size for cells in urban land uses &md significant supply of large cells with UL
and XU states. The model found good opportunitiesaflocating population to these larger
cells, because of two main reasons. The first regsthe favorable location of some of these
large cells. This is, for example, the case witla,Hgelide, and Zambuijal. All these villages
are mainly contained in one large cell particulangll located in terms of accessibility.
Moreover, this cell usually has neighboring cellsiate R, a fact that enhances their ability to
attract urban land uses. On the contrary, thesgelte of the center of Condeixa-a-Nova is
strongly disaggregated and cell sizes present smmmgeneity. The second reason relates to
the possibility of allocating a large amount of plgtion to a large cell without infringing the

UH limit for population density.

The existence of large cells inside urban centeydyred a significant difference for the ratio
between simulated and reference areas for each. stae large value of +30 percent

registered for UH state along with the negativeugabf -6 percent for UL state and +3
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percent for XU state is a direct consequence ofnbdel’s preference for larger cells. This
preference affected mainly UL cells: in the simaliatabout 127 hectares (34 cells) changed
from UL to UH state, while in reality only 68 herta (48 cells) changed this way. On the
opposite direction was the change from XU to UHestthe simulation assigned only about
32 hectares (30 cells) to this change while inityeabout 46 hectares (48 cells) changed from
the former state to the latter. The same behasi@bserved in the change from XU to UL
cells: the simulation assigned 44 hectares (28)call this change while in reality there were
91 hectares that changed between these two states fotal of 85 cells. These values
corroborate the idea that the model favors the maion of well located large cells in UL
state: it assigns a large amount of populatioratgd UL cells and only a small amount to

small UL and XU cells.

The number of cells whose transition was exactlemened by the simulation was lower
than expected considering the high valuekqfs From a total of 94 cells (205 hectares)
classified in urban land uses which experiencetk stansition only for 19 (23 hectares) the
simulation matched reality. Nonetheless, the maded able to identify approximately the
areas where change has occurred — which is whédy m@atters for planning purposes,

particularly at the municipal planning scale (Fig).

4.4 Forecast analysis

A forecast of land use change was made using treameters obtained from calibration for
the years 2011 and 2021 (which are coincident \iutiare censuses), starting from the
reference situation in 2001 (Figure 9a). A popolatigrowth rate of 10 percent was
considered for the 2001-2011 and 2011-2021 peribagire 9(b) and Figure 9(c) depicts
simulation maps for 2011 and 2021 respectively.ufation results point to the densification

of Condeixa-a-Nova’'s central areas, especialhhandreas closer to the industrial site — and
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this is indeed what is currently happening.

Insert Figure 9 approximately here

5 CONCLUSION

In this paper we presented the development andcatiph of a CA model based on irregular
cells that aim to improve the simulation of urbdmamge by enhancing the representativeness
of the underlying spatial structure. The model fitto a body of research that has been
growing fast in recent years. This can be attriduie the fact that the consideration of
irregular cells in a model makes urban form isse&sier to cope with. Furthermore, if the
irregular cells correspond to census blocks, vasbumts of reliable demographic and
socio-economic data can be used in the applicatidhe model. In addition to being based
on irregular cells, the CA model has a number dfeotinteresting features, e.g., cell
neighborhoods are variable, cell transition potdstdepend on an aggregate accessibility
measure, and land use demand is defined considpapglation and employment growth.

Taken together, these features make the model ignidbeative.

The CA model was tested in Condeixa-a-Nova, a srfadt-growing municipality in central
Portugal, with promising results that we expecvatidated as soon as the census of 2011
becomes available. The measure used to assessgtbement between simulated and
reference maps a variant of thekappaindex for contingency matrixes — was clearly above
commonly accepted thresholds (for example, the amédized for automatic land use
classification from remote sensing images). Thiemarkable, because the evolution of land
use in small, fast-growing municipalities takescplaccording to patterns that are typically
much more irregular than the ones generally enevedtin metropolitan and large urban
areas. For the calibration of the parameters ofribdel, we used a particle swarm algorithm.

To the best of our knowledge, this type of optirtima algorithm, which is particularly suited
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for the calibration of a large set of interdependesarameters, was never used before in the

calibration of CA models.

Despite the promising results given by the modhare is significant ground for improvement.
Land use demand is one of the issues that needulcateention in order to avoid biases
induced by large cells that became too attractivedévelopment. There are two alternatives
for tackling this shortcoming: to divide the largells in smaller ones at the outset (which
raises a modifiable area unit problem); to allogad@ulation to cells probabilistically as a
function of their transition potential. Other issu® improve are the computation of cell
transition potential (e.g., accessibility could beeasured taking into account different
transport modes) and the extension of the variabighborhood concept (e.g., to include
discontinuous spatial structures and time-evolviogfigurations). A last issue to address
relates to the consideration of a multi-scale apgino Urban phenomena take place at
different spatial scales, which suggests that ghemuld be simulated taking scale into account.
Within this approach our local-scale CA model wobkl embedded into a macro-scale CA
model to simulate the socio-economic forces thatedurban change at regional level. In the
upcoming future, our research on CA models basedregular cells will be focusing on

these issues.
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Figure Captions

Figure 1 - Generic neighborhood effect relationship

Figure 2 - Location and land use map (2001) fomthumicipality of Condeixa-a-Nova
Figure 3 - Irregular cells in the center of Con@dea«Nova

Figure 4 - Condeixa-a-Nova calibration maps

Figure 5 - CA model (grey) and PS algorithm flowmtha

Figure 6 — Evolution of three CA model parametansrd the application of PS
Figure 7 - Details of urban change in Condeixa-admain town

Figure 8 - Neighborhood effect relationships in Geira-a-Nova

Figure 9 - Condeixa-a-Nova forecast maps

Table Headings

Table 1 - Density thresholds for urban cell states

Table 2 - Contingency matrices for Condeixa-a-Nova
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Table 1 - Density thresholds for urban cell states

Household Size Construction Density  Population Density

State vear (Inhabitants) (Dwellings per hectare)Inhabitants per hectare)
UL 1991 2,5 10 13,2
2001 2,2 6 6,6
UH 1991 2,5 5 25,0
2001 2,2 3 12,5
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Table 2 - Contingency matrices for Condeixa-a-Nova

Reference Map

Simulation Map

UL UH I XU XI Sum Conditionalk g
UL 328 43 20 391 0,718
UH 33 40 18 91 0,362
I 3 2 5 0,598
XU 74 40 402 516 0,610
Xl 2 10 12 0,831
Sum 435 123 5 440 12

(&) Number of Cells - Overall Aggreement 0,771

Reference Map

Simulation Map

UL UH I XU XI Sum Conditionalk g
UL 735,9 66,6 27,9 830,4 0,732
UH 125,0 45,7 22,0 192,7 0,161
I 25,4 57 31,1 0,809
XU 75,4 34,6 339,5 449,5 0,678
Xl 39,9 119,2 159,1 0,728
Sum 936,3 146,9 65,3 389,4 124,9

(b) Area in hectares - Overall Aggreement 0,778
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