2,002 research outputs found

    De novo Assembly of a 40 Mb Eukaryotic Genome from Short Sequence Reads: Sordaria macrospora, a Model Organism for Fungal Morphogenesis

    Get PDF
    Filamentous fungi are of great importance in ecology, agriculture, medicine, and biotechnology. Thus, it is not surprising that genomes for more than 100 filamentous fungi have been sequenced, most of them by Sanger sequencing. While next-generation sequencing techniques have revolutionized genome resequencing, e.g. for strain comparisons, genetic mapping, or transcriptome and ChIP analyses, de novo assembly of eukaryotic genomes still presents significant hurdles, because of their large size and stretches of repetitive sequences. Filamentous fungi contain few repetitive regions in their 30–90 Mb genomes and thus are suitable candidates to test de novo genome assembly from short sequence reads. Here, we present a high-quality draft sequence of the Sordaria macrospora genome that was obtained by a combination of Illumina/Solexa and Roche/454 sequencing. Paired-end Solexa sequencing of genomic DNA to 85-fold coverage and an additional 10-fold coverage by single-end 454 sequencing resulted in ∼4 Gb of DNA sequence. Reads were assembled to a 40 Mb draft version (N50 of 117 kb) with the Velvet assembler. Comparative analysis with Neurospora genomes increased the N50 to 498 kb. The S. macrospora genome contains even fewer repeat regions than its closest sequenced relative, Neurospora crassa. Comparison with genomes of other fungi showed that S. macrospora, a model organism for morphogenesis and meiosis, harbors duplications of several genes involved in self/nonself-recognition. Furthermore, S. macrospora contains more polyketide biosynthesis genes than N. crassa. Phylogenetic analyses suggest that some of these genes may have been acquired by horizontal gene transfer from a distantly related ascomycete group. Our study shows that, for typical filamentous fungi, de novo assembly of genomes from short sequence reads alone is feasible, that a mixture of Solexa and 454 sequencing substantially improves the assembly, and that the resulting data can be used for comparative studies to address basic questions of fungal biology

    The Mating-Type Chromosome in the Filamentous Ascomycete Neurospora tetrasperma Represents a Model for Early Evolution of Sex Chromosomes

    Get PDF
    We combined gene divergence data, classical genetics, and phylogenetics to study the evolution of the mating-type chromosome in the filamentous ascomycete Neurospora tetrasperma. In this species, a large non-recombining region of the mating-type chromosome is associated with a unique fungal life cycle where self-fertility is enforced by maintenance of a constant state of heterokaryosis. Sequence divergence between alleles of 35 genes from the two single mating-type component strains (i.e. the homokaryotic mat A or mat a-strains), derived from one N. tetrasperma heterokaryon (mat A+mat a), was analyzed. By this approach we were able to identify the boundaries and size of the non-recombining region, and reveal insight into the history of recombination cessation. The non-recombining region covers almost 7 Mbp, over 75% of the chromosome, and we hypothesize that the evolution of the mating-type chromosome in this lineage involved two successive events. The first event was contemporaneous with the split of N. tetrasperma from a common ancestor with its outcrossing relative N. crassa and suppressed recombination over at least 6.6 Mbp, and the second was confined to a smaller region in which recombination ceased more recently. In spite of the early origin of the first “evolutionary stratum”, genealogies of five genes from strains belonging to an additional N. tetrasperma lineage indicate independent initiations of suppressed recombination in different phylogenetic lineages. This study highlights the shared features between the sex chromosomes found in the animal and plant kingdoms and the fungal mating-type chromosome, despite fungi having no separate sexes. As is often found in sex chromosomes of plants and animals, recombination suppression of the mating-type chromosome of N. tetrasperma involved more than one evolutionary event, covers the majority of the mating-type chromosome and is flanked by distal regions with obligate crossovers

    Abstracts from the Neurospora 2004 conference

    Get PDF
    Abstracts from the Neurospora 2004 conferenc

    The genetics of circadian rhythms in Neurospora crassa : do multiple oscillators exist?

    Get PDF
    Due to the character of the original source materials and the nature of batch digitization, quality control issues may be present in this document. Please report any quality issues you encounter to [email protected], referencing the URI of the item.Includes bibliographical references (leaves 19-21).Circadian biological clocks are found in virtually all organisms and function to generate daily rhythms. The circadian clock (built by one or more oscillators) controls rhythmicity in a wide range of processes, ranging from sleep/wake cycles in humans, photosynthesis in some plants, to reproduction in fungus and other eukaryotes. One organism, Neurospora crassa, displays an easily observed and assayable circadian rhythm in asexual spore production, conidiation, and is an excellent model for understanding the molecular and biochemical basis of circadian rhythms. Studies in Neurospora have identified the frequency (frq) gene as a central component of the fungal clock. Under most growth conditions, rhythmic development is absent in strains lacking a functional FRQ protein. However, under some conditions, rhythmic conidiation can be observed in a FRQ-null strain. This residual rhythmicicty was noticed early on, but went essentially ignored until recent experiments demonstrated rhythms in cultured FRQ-null strains grown in 12 hour temperature cycles in constant darkness. These data suggested that the FRQ-based oscillator is not the only oscillator in the cell and led to our hypothesis that the clock system is composed of more than one oscillator that can function to generate rhythms. To test this hypothesis, I have created random mutations in a FRQ-null strain and assayed for loss of rhythmicity in the temperature cycles. Fourteen mutant strains were identified that met these criteria. It is expected that some of these mutations will identify genes that function in the temperature-dependent oscillator

    Long-oligomer microarray profiling in Neurospora crassa reveals the transcriptional program underlying biochemical and physiological events of conidial germination

    Get PDF
    To test the inferences of spotted microarray technology against a biochemically well-studied process, we performed transcriptional profiling of conidial germination in the filamentous fungus, Neurospora crassa. We first constructed a 70 base oligomer microarray that assays 3366 predicted genes. To estimate the relative gene expression levels and changes in gene expression during conidial germination, we analyzed a circuit design of competitive hybridizations throughout a time course using a Bayesian analysis of gene expression level. Remarkable consistency of mRNA profiles with previously published northern data was observed. Genes were hierarchically clustered into groups with respect to their expression profiles over the time course of conidial germination. A functional classification database was employed to characterize the global picture of gene expression. Consensus motif searches identified a putative regulatory component associated with genes involved in ribosomal biogenesis. Our transcriptional profiling data correlate well with biochemical and physiological processes associated with conidial germination and will facilitate functional predictions of novel genes in N.crassa and other filamentous ascomycete species. Furthermore, our dataset on conidial germination allowed comparisons to transcriptional mechanisms associated with germination processes of diverse propagules, such as teliospores of the phytopathogenic fungus Ustilago maydis and spores of the social amoeba Dictyostelium discoideum

    Identification Of Novel Nuclear Proteins Required For Meiotic Silencing By Unpaired Dna In Neurospora Crassa

    Get PDF
    A fundamental step that occurs during sexual reproduction is meiosis, which is a specialized type of cell division. During meiosis, pairs of chromosomes exchange genetic information via recombination. At this point, the genome is particularly susceptible to viruses and other foreign genetic invasions. Therefore, it is important to protect the genome to prevent the transmission of foreign genetic materials to the offspring. There are several mechanisms work together to protect host genome from foreign genetic materials. These are known as “genome defense mechanisms”. The fungus Neurospora crassa is one of the best organisms for genome defense studies due to the presence of at least three genome defense mechanisms; including Repeat Induced Point mutation (RIP), Quelling, and Meiotic Silencing by Unpaired DNA (MSUD).The main focus of my dissertation is the MSUD pathway. MSUD is a process that detects and silences unpaired DNA between homologous chromosomes. During MSUD, Homologous chromosomes are scanned for unpaired regions by unknown protein complexes. These protein complexes may also contribute to homology search required by some DNA repair pathways. Therefore, identification of these proteins could thus have a significant impact for cancer research. Hence, one part of my dissertation is to identify and characterize novel proteins that detect unpaired DNA during meiotic silencing. In my findings, I have found a putative SNF2-family protein (SAD-6) required for efficient MSUD in Neurospora crassa and it is closely related to a protein called Rad54, which involved in the repair of DNA double-strand breaks by homologous recombination. Moreover, I was able to identify and characterize Neurospora crassa sad-7, a gene encoding a protein with RNA recognition motif (RRM). My experiments have confirmed that SAD-7 in N. crassa, is required for fully-efficient MSUD in the presence of unpaired DNA. Additionally, I have focused on Meiotic drive elements. These elements are found in eukaryotic genomes. In general, genetic loci are transmitted to the offspring during sexual reproduction by following the Mendelian inheritance patterns. However, there are some selfish loci that are capable of bias their own transmission rates through meiosis or during gametogenesis in the presence of a competing locus. These are known as meiotic drive elements. Neurospora crassa has a meiotic drive element known as Spore killer-2 (Sk-2) and it achieves the biased transmission by spore killing. When Sk-2 is crossed into a Spore killer sensitive opposite mating type (SkS), hypothetically there should be a mixed offspring population of killer resistant and killer sensitive ascospores. Surprisingly, when analyzing the ascospores, nearly all the survived ascospores express the Sk-2 genotype and all the ascospores with the Spore killer sensitive genotype are non-viable. However, there are a little known about the exact location of Sk-2 meiotic drive element and it’s mechanism of transmission. In my experiments, I was able identify a genetic element located in Neurospora chromosome III that is required and sufficient for spore killing. Overall, my results provide new insights to the search and unpaired DNA detection during meiosis and also the identification of the genetic element required for spore killing sheds lights towards the understanding of the spore killer mechanism in Neurospora crassa

    Neurospora Bibliography

    Get PDF
    This bibliography represents my attempt to collect all works dealing substantially with Neurospora
    corecore