4 research outputs found

    Low-Latency and Fresh Content Provision in Information-Centric Vehicular Networks

    Get PDF
    In this paper, the content service provision of information-centric vehicular networks (ICVNs) is investigated from the aspect of mobile edge caching, considering the dynamic driving-related context information. To provide up-to-date information with low latency, two schemes are designed for cache update and content delivery at the roadside units (RSUs). The roadside unit centric (RSUC) scheme decouples cache update and content delivery through bandwidth splitting, where the cached content items are updated regularly in a round-robin manner. The request adaptive (ReA) scheme updates the cached content items upon user requests with certain probabilities. The performance of both proposed schemes are analyzed, whereby the average age of information (AoI) and service latency are derived in closed forms. Surprisingly, the AoI-latency trade-off does not always exist, and frequent cache update can degrade both performances. Thus, the RSUC and ReA schemes are further optimized to balance the AoI and latency. Extensive simulations are conducted on SUMO and OMNeT++ simulators, and the results show that the proposed schemes can reduce service latency by up to 80% while guaranteeing content freshness in heavily loaded ICVNs

    A proactive mobile edge cache policy based on the prediction by partial matching

    Get PDF
    The proactive caching has been an emerging approach to cost-effectively boost the network capacity and reduce access latency. While the performance of which extremely relies on the content prediction. Therefore, in this paper, a proactive cache policy is proposed in a distributed manner considering the prediction of the content popularity and user location to minimise the latency and maximise the cache hit rate. Here, a backpropagation neural network is applied to predict the content popularity, and prediction by partial matching is chosen to predict the user location. The simulation results reveal our proposed cache policy is around 27%-60% improved in the cache hit ratio and 14%-60% reduced in the average latency, compared with the two conventional reactive policies, i.e., LFU and LRU policies

    Named Data Networking in Vehicular Ad hoc Networks: State-of-the-Art and Challenges

    Get PDF
    International audienceInformation-Centric Networking (ICN) has been proposed as one of the future Internet architectures. It is poised to address the challenges faced by today's Internet that include, but not limited to, scalability, addressing, security, and privacy. Furthermore, it also aims at meeting the requirements for new emerging Internet applications. To realize ICN, Named Data Networking (NDN) is one of the recent implementations of ICN that provides a suitable communication approach due to its clean slate design and simple communication model. There are a plethora of applications realized through ICN in different domains where data is the focal point of communication. One such domain is Intelligent Transportation System (ITS) realized through Vehicular Ad hoc NETwork (VANET) where vehicles exchange information and content with each other and with the infrastructure. To date, excellent research results have been yielded in the VANET domain aiming at safe, reliable, and infotainment-rich driving experience. However, due to the dynamic topologies, host-centric model, and ephemeral nature of vehicular communication, various challenges are faced by VANET that hinder the realization of successful vehicular networks and adversely affect the data dissemination, content delivery, and user experiences. To fill these gaps, NDN has been extensively used as underlying communication paradigm for VANET. Inspired by the extensive research results in NDN-based VANET, in this paper, we provide a detailed and systematic review of NDN-driven VANET. More precisely, we investigate the role of NDN in VANET and discuss the feasibility of NDN architecture in VANET environment. Subsequently, we cover in detail, NDN-based naming, routing and forwarding, caching, mobility, and security mechanism for VANET. Furthermore, we discuss the existing standards, solutions, and simulation tools used in NDN-based VANET. Finally, we also identify open challenges and issues faced by NDN-driven VANET and highlight future research directions that should be addressed by the research community
    corecore