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A R T I C L E   I N F O  A B S T R A C T 

  The proactive caching has been an emerging approach to cost-effectively boost the 

network capacity and reduce access latency. While the performance of which extremely 

relies on the content prediction.  Therefore, in this paper, a proactive cache policy is 

proposed in a distributed manner considering the prediction of the content popularity and 

user location to minimise the latency and maximise the cache hit rate. Here, a 

backpropagation neural network is applied to predict the content popularity, and prediction 

by partial matching is chosen to predict the user location. The simulation results reveal our 

proposed cache policy is around 27%-60% improved in the cache hit ratio and 14%-60% 

reduced in the average latency, compared with the two conventional reactive policies, i.e., 

LFU and LRU policies.    
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1. Introduction  

This article is an extended version of a conference paper 

presented in 2018 at the Biomedical Engineering, Healthcare, 

Robotics, and Artificial Intelligence 2018 [1]. 

With the ubiquitous emergence of the smart mobile devices, 

e.g., the mobile phones, as well as the trend towards high data rate 

applications, exponential mobile data have been generated in the 

wireless network while the current network cannot support the fast 

growth of the mobile data traffic [2] [3]. As a result, the storage 

capacity of the wireless network needs to be expanded and the 

conventional way is the dense-deployment of the base stations 

(BSs). However, it costs a lot for the mobile operator to upgrade 

this infrastructure [4]. Therefore, a more cost-effective approach is 

needed and the caching technique is regarded as an ideal approach 

[5].  

By deploying the cache devices at the edge of the wireless 

network in proximity to the users, e.g., BSs and user terminals 

(UTs), and storing the popular contents at the cache devices [6] [7], 

users can directly retrieve the contents from the edge nodes rather 

than the remote core network via the backhaul links [8]. Hence, the 

content access latency can be decreased due to the reduced content 

transmission distance [9]. In parallel, duplicated requests for the 

same contents from the core network to the edge of the network 

can be avoided, which reduces the potential data congestion of the 

network [10]. Furthermore, due to the increasingly decreased 

prices of the cache devices, the storage capacity of the wireless 

network can be more cost-effectively boosted compared to the 

conventional way [4].  

Due to the limited storage capacity of the cache devices, only 

a part of the contents can be stored in the edge cache devices. 

Hence, multiple works are focusing on how to design an efficient 

cache content placement policy. The most common approaches are 

least frequently used (LFU) and least recently used (LRU), which 

are referred to as reactive cache policies that determine whether to 

cache a specific content after it has been requested [11] [12]. In 

detail, LRU always caches the most recently requested contents 

while LFU caches the most frequently requested contents [13]. 

While the reactive cache policy is not efficient during peak hours. 

Hence, the proactive caching strategy is introduced, by which the 

content can be cached before the request, and hence the users can 

access the preferred content immediately when they arrive in new 

areas.[14] [15].   

There are many proactive schemes have been investigated. In 

[16], a threshold-based proactive cache scheme based on 

reinforcement is presented, aiming at minimising the average 

energy cost. In this case, the time variation of the content is 

considered, which means the content popularity is changed over 

time rather than static. In practice, only the content whose lifetime 

is not expired has the potential to be cached. In [17], a caching 

scheme is presented to improve the cache hit rate and reduce 

energy consumption by predicting the content popularity 

distribution. In [18], a proactive cache based on the estimation of 

the content popularity is presented, targeting increasing the cache 

hit rate and decreasing the content transmission expenditure. 

Motivated by deep learning which can improve the accuracy of the 

content prediction, many works utilise deep learning for proactive 

caching. In [19], deep learning is utilised to predict the future 

probability of the content and the predicted content with a high 

probability will be cached. In [20], a proactive cache policy is 
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proposed based on a deep recurrent neural network model which 

can predict the future content requests.  

Besides, in [21], a proactive cache policy for the vehicular 

network is proposed, where the roadside units (RSUs) are 

equipped with the cache capability under high mobility of the 

moving vehicles. There, a long-short term memory (LSTM) 

network is utilised to predict the direction of the moving vehicles. 

Then the proactive cache problem is modeled as a Markov 

decision process (MDP) problem and solved by a heuristic 휀n-

greedy algorithm. In [22], Gao et al. design a proactive cache 

scheme for the hierarchical network where each small base station 

(SBS) can perceive the user mobility of its adjacent small base 

stations (SBSs), aiming at maximising the cache hit rate and 

minimising the transmission latency. In specific, the users with 

different moving speeds are clustered into different layers and the 

cached content deployment problem is solved by a genetic 

algorithm. In [23], a cooperative cache framework is introduced 

to increase the cache hit rate and minimise the access latency, in 

which the prediction by partial matching (PPM) is utilised to 

predict the vehicles’ probability of arriving at the hot areas. The 

vehicles with long sojourn time in a hot spot are equipped with 

cache capability and are regarded as cache nodes.  A summary of 

the aforementioned works is shown in Table 1. 

Table 1 Summary of existing cache policies. 

Policy Contribution 

[11] [12] 
LFU and LRU are explained to manage the cache content 

updating. 

[16] 

A reinforcement learning-based proactive cache policy is 

proposed to minimise energy consumption. Here, content 
popularity is a time-varying variable and only the contents whose 

lifetime are not expired can be considered to be cached or not. 

[17] 
An accurate content popularity prediction is adopted to improve 

the cache hit rate and reduce energy consumption. 

[18] 

A proactive cache policy is proposed to increase the cache hit rate 

and decrease the content transmission cost. Here, transfer 

learning is applied to evaluate the content popularity, and a 

greedy algorithm is adopted to deal with the cache problem. 

[19] 

A deep learning algorithm is applied to predict the future 

probability of the content, and the content with a high predicted 

probability will be pre-cached. 

[20] 

A proactive cache policy is proposed to alleviate the data 

congestion and reduce the average latency, in which a deep 

recurrent neural network algorithm is adopted to predict future 

content requests. 

[21] 

A long-short term memory (LSTM) network is utilised to predict 

the direction of the moving vehicles, and the proactive cache 

problem is modeled as MDP and solved by a heuristic 휀n-greedy 

algorithm. 

[22] 

A two-layer cache network consisting of several MSBs and SBSs 

is proposed to improve the cache hit ratio and reduce the average 

latency. Here, the adjacent SBSs can communicate with each 
other. Besides, the users with different moving speeds are 

clustered into different layers, i.e. the MBS or the SBS.   

[23] 

A cooperative cache framework is proposed to increase the cache 
hit ratio and reduce access latency. Here, a PPM algorithm is 

adopted to predict vehicles’ probability of arriving in the hot 

areas. 

Different from the aforementioned works singly considering 

the prediction of the content popularity or the users’ location, this 

extended paper designs a proactive cache policy jointly 

considering the prediction of the user preference and the user 

location to minimise the average latency and maximise the cache 

hit rate, which to the best of our knowledge has not been 

considered in the prior research works. In detail, a practical 

scenario is considered, in which the BSs are distributed and the 

users are mobile. A backpropagation (BP) neural network, one of 

the deep learning methods, is applied to predict the user 

preference based on the historical content requests. Furthermore, 

the user’s future location is predicted via PPM which has been 

introduced in our previous work [1], and the user’s preferred 

content is pre-cached at the location in which the user will highly 

arrive. The main contributions of this paper are as follows: 

 This paper focuses on minimising the average latency and 

maximising the cache hit rate by jointly considering the 

content popularity prediction and user location prediction. 

 The BP neural network is applied to predict the content 

popularity, and PPM is chosen to predict the user location. 

 The effect of the several parameters on the cache 

performance is investigated, i.e., the Zipf parameter, the 

content size, the transmission rate, the distance of the 

backhaul link, and the distance between the user and the 

BS. 

The remainder of this paper is organised as follows. The system 

model and the problem formulation are shown in section 2. Section 

3 introduces the proactive cache policy. We show the simulation 

results in section 4 and conclude in section 5. 

2. System model and problem formulation 

In this section, we describe the system model, state the 

assumption, and formulate the problem. 

2.1. System model 

For each time slot t whose period is one hour, the proposed 
proactive cache policy adopts the PPM algorithm to obtain the 
probability of the user arriving at different locations. The location 
with the highest value is regarded as the future location. In parallel, 
the prediction of the user preference is trained via the BP neural 
network. Once the predicted user preference and the future 
location are obtained, the popular contents in the user preference 
are pre-cached at the future location. Consequently, once the user 
arrives in this location in the next time slot (t+1), the user can 
immediately obtain the requested content. However, if the 
prediction is not accurate, the BS needs to retrieve the requested 
content from the core network and then send it to the users, which 
imposes a more latency consumption issue.  

As shown in Figure 1, the distributed cache architecture consists 

of the following network equipment (NE): a core network,  ℳ 

cache-enabled BSs, and 𝒩 mobile users. The 𝔪𝑡ℎ BS is denoted 

by 𝐵𝑆𝓂 for 1 < 𝔪 < ℳ, the 𝓃𝑡ℎ user is denoted by 𝑈𝓃 for 1 <𝓃  
< 𝒩, the circular coverage area of 𝐵𝑆𝓂 is denoted as 𝐴𝓂, and the 

set of the users served by 𝐵𝑆𝓂 is denoted as 𝑈𝓂. Let  ℱ𝑛={𝒻𝓃1, 

𝒻𝓃2,…, 𝒻𝓃𝓀} denotes the set of 𝓀 contents requested by 𝑈𝓃. The 

content popularity distribution of a user, i.e. user preference, 

follows Zipf distribution law [24].  The popularity of the ℜ𝑡ℎ 

content requested by 𝑈𝓃 is characterized as: 
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𝔭𝓃(ℜ, 𝔐, 𝔘) = 

1

ℜ𝔐

∑
1

𝔘𝔐
𝔘
1

,                              (1)                                                                                        

where ℜ is the rank of the content in ℱ𝑛, 𝔐 is the Zipf parameter 

for 0< 𝔐<1, and 𝔘 is the total number of contents in ℱ𝑛.   

Let ℱ𝑈𝓂
 represents the set of the contents requested at 𝐵𝑆𝓂, 

𝔭𝑈𝔪
 represents the content popularity at 𝐵𝑆𝓂 and 𝒞={1,2,…, ℋ} 

represents the library of all the contents requested by 𝒩 mobile 

users served by ℳ BSs. Assume each BS can store 𝒽 contents at 

most for 𝒽< ℋ, and each content has the same size ℬ. Besides, 

one user only requests one content at most for each time slot t.  

 

Figure 1: The cache-enabled network. 

2.2. Problem formulation 

Based on the mention before, our target is to minimise the 

access latency 𝔗, which is comprised of the transmission latency 

and propagation latency [25]. The transmission latency is caused 

by transmitting the content from ENi to ENj [26],  in which ENi 

and ENj are any two network equipment. According to [27], the 

transmission rate ℝ(𝑖,𝑗) is calculated  as: 

ℝ(𝑖,𝑗)= Blog2(1+
𝜌𝜇

𝜎2),                                 (2)                                                                                     

where B (Hz) is the available spectrum bandwidth, 𝜌  is the 

transmitted power, 𝜎2 is the noise power and 𝜇 is the channel gain 

between ENi and ENj. 

Therefore, the transmission latency 𝔗𝑡(𝑖,𝑗)
𝑐  based on the size of 

the requested content 𝑐 and the transmission rate is derived as: 

𝔗𝑡(𝑖,𝑗)
𝑐 =

𝒮

ℝ(𝑖,𝑗)
,                                      (3)                                                                                                   

where 𝒮 is the size of requested content 𝑐. 

The propagation latency 𝔗𝑝(𝑖,𝑗)

𝑐  is defined as the time of 

propagating the requested content 𝑐 from ENi to ENj. Affected by 

the propagation speed of the electromagnetic wave and the 

distance between the ENi and ENj, the propagation latency  𝔗𝑝(𝑖,𝑗)

𝑐  

is expressed as: 

𝔗𝑝(𝑖,𝑗)

𝑐  =
𝒥(𝑖,𝑗)

𝑣
 ,                                 (4)                                                                                                     

where 𝑣 is the propagation speed of the electromagnetic wave in 

the corresponding channel, 𝒥(𝑖,𝑗) is the distance between ENi and 

ENj.  

Therefore, the access latency is expressed as: 

𝔗 = 𝔗𝑡 (𝑖,𝑗)
𝑐  + 𝔗𝑝(𝑖,𝑗)

𝑐                               (5)                                                                                        

 = 
𝒮

ℝ(𝑖,𝑗))
 + 

𝒥(𝑖,𝑗)

𝑣
.                                    (6)                                                                                       

In detail, the content can be directly retrieved from BS if it is 

hit at the BS, i.e., the content is cached at the BS. Hence the 

latency 𝔗ℎ𝑖𝑡 of cached content is shown as: 

𝔗ℎ𝑖𝑡= 
𝒮

ℝ(𝑢,𝑏)
 + 

𝒥(𝑢,𝑏)

𝑣ℎ𝑖𝑡
,                                (7)                                                                                    

where ℝ(𝑢,𝑏) is the transmission rate between a user and a BS,  

𝒥(𝑢,𝑏)  is the distance between a user and a BS, and 𝑣ℎ𝑖𝑡  is the 

propagation speed of the electromagnetic wave in the air. 

Otherwise, the content needs to be retrieved from the core 

network via the backhaul links if the content is missed at the BS, 

i.e., the content is not cached at the BS. According to [28], the 

transmission rate ℝ(𝑢,𝑐𝑜𝑟𝑒)  from the core network to the BS is 

shown as  

ℝ(𝑏,𝑐𝑜𝑟𝑒)= R*,                                      (8)                                                                                             

where R* is the maximal transmission rate of the network.                              

Therefore, the latency of a missed content 𝔗𝑚𝑖𝑠𝑠𝑒𝑑 consisting 

of the transmission latency 𝔗𝑡 (𝑢,𝑐𝑜𝑟𝑒)
𝑐  and the propagation latency 

of a missed content is expressed as:              

𝔗𝑡(𝑢,𝑐𝑜𝑟𝑒)
𝑐  = 

𝒮

R∗
+

𝒮

ℝ(𝑢,𝑏)
,                                 (9)                                                                                      

𝔗𝑝(𝑢,𝑐𝑜𝑟𝑒)

𝑐  =  
𝒥(𝑢,𝑏)

𝑣ℎ𝑖𝑡
 + 

𝒥(𝑏,𝑐𝑜𝑟𝑒)

𝑣𝑏
,                    (10)                                                                         

𝔗𝑚𝑖𝑠𝑠𝑒𝑑 =
𝒮

ℝ(𝑢,𝑏)
 + 

𝒮

R∗
 +

𝒥(𝑢,𝑏)

𝑣ℎ𝑖𝑡
 + 

𝒥(𝑏,𝑐𝑜𝑟𝑒)

𝑣𝑏
,          (11)                                                                                            

where  𝒥(𝑢,𝑏) is the distance between the user and the BS, 𝒥(𝑏,𝑐𝑜𝑟𝑒) 

is the distance between the BS and the core network, and 𝑣𝑏 is the 

propagation speed of the electromagnetic wave in the backhaul 

link. 

Therefore, the average system latency 𝔗 is calculated as:  

𝔗=
∑ [(

𝒮

ℝ(𝑢,𝑏)
+ 

𝒥(𝑢,𝑏)

𝑣ℎ𝑖𝑡
)+(1−𝒵)(

𝒮

R∗
 + 

𝒥(𝑏,𝑐𝑜𝑟𝑒)

𝑣𝑏𝑘
  )]𝑁

1

𝑁
,              (12)                                                             

where 𝒵 is the cache hit rate and is calculated as follows: 

𝒵 =
∑ ∑ 𝐹(𝑅𝑖𝑈𝓃

)
𝒢
1

𝒩
𝑛=1

∑ 𝒢𝒩
𝑛=1

 ,                         (13)                                                                                    

where 𝑅𝑖𝑈𝓃
 is the content requests of 𝑈𝓃 , 𝒢  is the number of 

request times of 𝑅𝑖𝑈𝓃
. The 𝐹(𝑅𝑖𝑈𝓃

) is calculated as 

𝐹(𝑅𝑖𝑈𝓃
) = {

1, 𝑅𝑖𝑈𝓃
𝑖𝑠 𝑐𝑎𝑐ℎ𝑒𝑑

0, 𝑅𝑖𝑈𝓃
 𝑖𝑠 𝑛𝑜𝑡 𝑐𝑐𝑎ℎ𝑒𝑑

           (14)                                                              

The problem of minimising the average system latency is 

modeled as follows  
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P_1: min 𝔗                                   (15)                                                                                          

s.t.  0<𝑣𝑏𝑘<𝑣ℎ𝑖𝑡 ≤3× 108𝑚/𝑠                (16)                                                                      

0≤ 𝒵 ≤ 1                                    (17)                                                                                         

3. The proactive cache based on the content popularity 

prediction and future location prediction 

In this section, a proactive cache policy is proposed to address 

P_1. Firstly, the user preference is predicted according to the 

backpropagation (BP) neural network. Besides, we introduce the 

future location prediction based on the prediction by partial 

matching (PPM) algorithm. The proposed cache policy minimises 

the average system latency by pre-caching the predicted popular 

content at the correspondingly predicted location. 

3.1. The content popularity prediction based on backpropagation 

neural network 

User preference is the content probability distribution of 

individual user and content popularity is the content probability 

distribution of a cluster of users. Due to the characteristic of the 

user preference that a small number of contents account for most 

of the data traffic, the cache policy considers caching the popular 

content to reduce the complexity of the computation. Hence, the 

set of the  popular contents of 𝑈𝑛  is denoted as ℙ𝑈𝑛
  ={𝑦𝑈𝑛

1 , 

𝑦𝑈𝑛
2 , …,𝑦𝑈𝑛

𝑘 }, which contains k samples by choosing the top k 

contents with the highest probability from the user preference. 

Therefore, the set of the popular contents at BSm is denoted as 

ℙBS𝑚={ ℙ1, ℙ2, … ℙ𝑈𝑛
… , ℙ𝑈𝑚

}.   

After obtaining the popular content database of BSm, the BP 

neural network, as shown in Figure 2, is applied to predict the 

content popularity. The proposed neural network is comprised of 

three layers, namely the input layer, hidden layer, and output layer. 

The number of the neuron cells in the input layer and the output 

layer is equal to the cache storage 𝑘. The content requests of 𝑈𝑛 

are collected each hour and denoted as a training data set. Besides, 

two continuous training data sets are chosen to optimise the 

parameter of the neural network. The value 𝑦𝑖𝑛 for the input layer 

is the request times of the top 𝑘 popular contents in the former 

training data set. The value 𝑦𝑟𝑒𝑎𝑙  is the request times of the top 𝑘 

popular contents in the latter training data set. Furthermore, mean 

squared error (MSE) is utilised as the loss function in the content 

prediction. The MSE is formulated as  

MSE = 
∑ (𝑦𝑟𝑒𝑎𝑙−𝑦𝑝𝑟𝑒)2𝑘

1

𝑘
,                         (18)                                                                           

where 𝑦𝑝𝑟𝑒 is the value of the output layer. 

Besides, the Relu function is chosen as the activation function, 

which is expressed as 

𝑅𝑒𝑙𝑢(𝑦𝑖𝑛) = {
0, 𝑦𝑖𝑛 < 0

𝑦𝑖𝑛 , 𝑦𝑖𝑛 ≥ 0
 .                      (19)                                                                         

With the help of stochastic gradient descent (SGD), the 

proposed neural network can optimally predict the content 

popularity after enough training. 

 

Figure 2: The BP neural network. 

3.2. The future location prediction based on a prediction by 

partial matching 

Before the location prediction, the historical location 

information is collected from a real environment model as shown 

in Figure 3. The areas labeled by red symbols are regarded as the 

hot spots with long sojourn time. The historical location 

information sequence is denoted as ℒ which is related to the hot 

spots. 

 

Figure 3： The user movement model. 

After obtaining the historical location information ℒ, PPM is 

applied to predict the user’s future location. PPM is a data 

compression method based on the finite context and it has been 

proven effective for the location prediction [23]. The probability 

of the future location y appearing after the given context Con is 

model as P(ycon), where Con is the sequence of the location and 

the length of the sequence is called order [29]. Furthermore, PPM 

proposes an escape mechanism to deal with the zero-frequency 

problem [30]. When escape occurs, i.e. y is missed after Con. 

Then the PPM outputs an escape probability defined as 

Pesc(esc|Con). The computation of PPM is shown in Algorithm 

1. Firstly, PPM checks whether y appears after Con. If y appears, 

PPM records the number of appearing times and outputs the 

probability 𝑃(𝑦|𝐶𝑜𝑛) , otherwise, PPM outputs the escape 

probability Pesc(esc|Con). Under the escape situation, PPM 

restarts to check whether y appears after the new Con (the order 

of which is the original order minus 1). The process is finished 

until y appears after Con or the order is -1. The predictive 

probability of the future location is the multiple of the sub-

probabilities and the calculation is shown as: 
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              𝑃 = ∏ 𝑃𝑖
𝑠𝑡𝑒𝑝
1 ,                                   (20                                                                                         

𝑃𝑖 = {
𝑃(𝑦|𝐶𝑜𝑛) =

𝑁𝑦

𝑁𝑒𝑠𝑐+𝑁𝐶𝑜𝑛
, 𝑦 𝑎𝑝𝑝𝑒𝑎𝑟𝑠 𝑎𝑓𝑡𝑒𝑟 𝐶𝑜𝑛

𝑃𝑒𝑠𝑐(𝑒𝑠𝑐|𝐶𝑜𝑛) =
𝑁𝑒𝑠𝑐

𝑁𝑒𝑠𝑐+𝑁𝐶𝑜𝑛
, 𝑦 𝑒𝑠𝑐𝑎𝑝𝑒𝑠 𝑎𝑓𝑡𝑒𝑟 𝐶𝑜𝑛

 , 

(21)                                                     

where 𝑃𝑖  is the probability of step i, 𝑁𝑦 represents the number of 

the times of y appearing after Con, 𝑁𝑒𝑠𝑐  represents the number of 

the characters appearing after Con, and 𝑁𝐶𝑜𝑛  represents the 

number of the times of all the characters appearing after Con.     

Once the probabilities of the possible locations are obtained 

via PPM, these obtained probabilities are ranked in descending 

order. The location with the highest probability is regarded as the 

future location. 

Algorithm 1 PPM algorithm 

Input: historical data ℒ 

Output: the probability P of the future location 𝑦 

1 Initialize P=0 

2 order = h, j =1 

3 if y appears after Con  

4     𝑃𝑗=P(y|Con) 

    Process finished 

5 else 

6     𝑃𝑗=P(esc|Con) 

7     h - =1, j + =1 

8     Restart the step 3-7 

9 The process is finished until  y appears after Con or h =-1. 

Output j, and P=∏ 𝑃𝑗
𝑗
1  

 

Here is an example to help understand PPM computation by 

giving a user path {L1, L3} and the future location L4 in the 

historical data sequence ℒ ={L1, L2, L3, L4, L5, L1, L3, L1, L4, L1, L2, 

L4, L3, L4, L1}. First, since the sequence{ L1, L3, L4 } cannot be 

found from the historical data sequence, the escape probability 

P(esc| L1, L3) is outputted based on Pesc(esc|Con) in Eq. (21), as 

shown in Eq. (22). Then the new order is 1 and consequently, the 

new context is { L3 }. The new sequence { L3, L4 } can be found 

from the historical date sequence, and therefore the probability 

P(L4| L3) is obtained based the 𝑃(𝑦|𝐶𝑜𝑛) in Eq. (21), as shown in 

Eq. (23). Finally, the probability P(L4| L1, L3) is obtained based on 

Eq. (20), as shown in Eq. (24).   

   P(esc| L1, L3) = 
𝑁(esc| 𝐿1,𝐿3)

𝑁(esc| 𝐿1,𝐿3)+𝑁(𝐿1| 𝐿1,𝐿3)
 = 

1

1+1
 = 

1

2
 ,      (22)                                                          

where 𝑁(esc| 𝐿1,𝐿3) is the number of the characters appearing after 

{L1, L3}, and 𝑁(𝐿1| 𝐿1,𝐿3)  is the number of the times of all the 

characters appearing after {L1, L3} since only L1 appears after {L1, 
L3}. 

P(L4| L3) = 
𝑁(𝐿4| 𝐿3) 

𝑁(esc| 𝐿3)+𝑁(𝐿4| 𝐿3) +𝑁(𝐿1| 𝐿3) 
 = 

2

2+2+1
  =  

2

5
 ,   (23)                                               

where 𝑁(𝐿4| 𝐿3) is the number of L4 appearing after L3,  𝑁(esc| 𝐿3) is 

the number of the characters appearing after L3 and 𝑁(𝐿1| 𝐿3)   is 

the number of L1 appearing after L3. The sum of 𝑁(𝐿4| 𝐿3)  and 

𝑁(𝐿1| 𝐿3) is called the number of the times of all the characters 

appearing after  L3.            

P(L4|L1, L3) = P(esc|L1,L3) × P(L4|L3)= 
1

2
×

2

5
=

1

5
 ,     (24)                                                     

3.3. The pre-deployment of the popular content at the future 

location 

In each time slot t, the users’ future locations in which users 

will highly arrive at the next time slot t+1 are predicted via PPM. 

In parallel, the user preference at t+1 is predicted via BP neural 

network. The top w contents with the highest number of request 

times are regarded as the popular contents in the future. After that, 

these popular contents are pre-deployed at the corresponding 

future location. Hence, in the next time slot t+1, if the prediction 

is correct, users can immediately obtain their preferred contents, 

which extremely reduces the average system latency.  

4. Simulation results and analyzation  

In this section, we consider a distributed BS caching network 

which consists of 10 BS, 30 users, and 6 locations. The number of 

content requests of each user is 3000. The comprehensive 

simulation shows the performance of our proposed policy, LFU, 

and LRU in terms of the average latency and cache hit rate. The 

specific parameter settings are shown in Table 2. The program is 

modeled via PyTorch language in Pycharm software.To further 

show the improvement of our proposed policy in terms of the 

cache hit rate and the reduction of our proposed policy in terms of 

the cache hit rate compared with LFU and LRU policies, we 

propose the growth ratio 𝒫𝐺  and the reduction ratio 𝒫𝑅 , which are 

expressed as: 

𝒫𝐺 =
𝒞𝑜𝑢𝑟 − 𝒞𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔

𝒞𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔
,                           (25)                                                                              

𝒫𝑅 =
𝔗𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔 − 𝔗

𝑜𝑢𝑟

𝔗𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔
,                          (26)                                                                             

where  𝒞𝑜𝑢𝑟  and  𝒞𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔  is the cache hit rate of our proposed 

policy and any one of the LFU and LRU policies, respectively. 

𝔗𝑜𝑢𝑟  and 𝔗𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔 is the average latency of our proposed policy 

and any one of the LFU and LRU policies, respectively. 

Table 2: The simulation parameter settings 

symbol value 

𝑣𝑏𝑘 1 ×107 m/s 

𝑣ℎ𝑖𝑡 3 ×108 m/s 

ℝ(𝑖,𝑗) 10~50 Mbps 

𝜎2 1W 

𝜌 3W 
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𝒥(𝑢,𝑏) 10~50km 

𝒥(𝑏𝑠,𝑐𝑜𝑟𝑒) 100km 

ℬ 

𝔐 

𝒬 

𝛿 

30Kb~450Kb 

1.1~1.8 

1%~10% 

2%~10% 

 

Figure 4 reveals the cache hit rate (represented in percentage) of 

our proactive policy and the conventional reactive policies, i.e., 

LFU and LRU. The number of the total content requests is 6000, 

the Zipf parameter of each user varies between 1.7 and 1.8. 

Besides, to demonstrate the effect of the cache capacity on the 

cache performance, we introduce the cache capacity ratio 𝛿 = 
𝒽

ℋ
. 

And in this simulation, we assume 𝛿= 2%, 4%, 6%, 8% and 10%. 

Horizontally, the cache hit rates of LFU, LRU, and our proposed 

policy increase with the larger cache capacity ratio.  The tendency 

demonstrates that increasing the cache capacity can improve the 

cache hit rate since more popular contents can be cached. We also 

notice that our proactive policy has the highest cache hit rate, 

which is around 10-25% higher than that of LFU and LRU 

policies, no matter how the Zipf parameter varies. Therefore, our 

proposed policy outperforms the other two policies.  

 

Figure 4: The cache hit rate vs. cache capacity ratio 𝛿= 
𝒬

ℋ
. 

Figure 5 investigates the effect of the Zipf parameter 𝔐 on the 

cache hit rate of our proposed policy with the other two policies 

as mentioned before. We assume 𝛿 is 10%, and the Zipf parameter 

of each user varies in the range [1.1, 1.2], [1.2, 1.3], [1.3, 1.4], 

[1.4, 1.5], [1.5, 1.6], [1.6, 1.7] and [1.7, 1.8]. As the Zipf 

parameter grows, the cache hit rates of all the cache policies 

increase. The reason is that fewer contents are taking up more 

content requests as the Zipf parameter grows, and hence the 

popular content becomes more popular. Considering the fixed 

number of the total content request, the number of content reduces. 

With the same capacity, the cache has a higher chance to store 

more contents and the cached contents are more popular, which 

contributes to a higher cache hit rate. Furthermore, the slopes of 

the three curves are gradually reduced. The reason is with the 

larger Zipf parameter, the newly cached popular contents have 

fewer content requests compared with the initially cached 

contents.  We also notice that the two reactive policies have a 

relatively close cache hit rate, and the cache hit rate of our 

proposed policy is around 24%-38% higher than that of the two 

reactive policies.     

 

Figure 5:The cache hit rate vs. the Zipf parameter. 

The relation between the average latency and the size of the 

content is displayed in Figure 6.  Here, the size of the content is 

30Kb, 200Kb, 200Kb, 250Kb, 300Kb, 350Kb, and 450Kb, 

respectively. Besides, we set the cache capacity ratio 𝛿 is 10% and 

the fluctuation of the Zipf parameter is between 1.7 and 1.8, the 

distance between the user and the BS is 10km and the distance of 

the backhaul link is 100km. As the size of the content grows, the 

average latencies of all the policies increase. The reason is the 

transmitter consumes more time to send the content into the 

channel as the size of the content grows. Vertically, the average 

latency obtained by our proposed policy is around 60% reduced 

compared with LFU and LRU regardless of the size of the content, 

which implies our proposed policy outperforms the two reactive 

policies. 

 

Figure 6: The average latency vs. the size of the content. 

Figure 7 shows the relationship between the average latency and 

the transmission rate between the user and BS. Here, the content 

size is 400Kb, the storage capacity ratio is 10%, the distance 

between the user and the BS is 10km and the distance of the 

backhaul link is 100km. The transmission rate between user and 
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BS is 10Mbps, 20Mbps, 30Mbps, 40Mbps, and 50Mbps, 

respectively. As the transmission rate between user and BS grows, 

the average latencies of all the policies reduce.  The reason is that, 

with the larger transmission rate, the latency between the user and 

the BS is reduced. Also, the average latency of our proposed 

policy is 31%-64% reduced compared with the other two policies.  

 

Figure 7:The average latency vs. transmission rate between the user and the 
BS.  

As shown in Figure 8, the average latency is plotted as a 

function of the Zipf parameter. Here, the Zipf parameter of each 

user varies in the range [1.1, 1.2], [1.2, 1.3], [1.3, 1.4], [1.4, 1.5], 

[1.5, 1.6], [1.6, 1.7] and [1.7, 1.8], respectively. Besides, the 

transmission rate between the user and the BS is 50Mbps, the 

content size is 400Kb, the storage capacity ratio 𝛿  is 10%, the 

distance between the user and the BS is 10km and the distance of 

the backhaul link is 100km. As the Zipf parameter increase, the 

average latencies of three policies are reduced. The reason is that, 

with the increase of the Zipf parameter, more contents are cached 

locally, and hence fewer contents need to be retrieved from the 

remote core network. And the latency from the BS is lower than 

from the core network. Also, as the Zipf parameter grows, the 

slopes of the three curves gradually decrease. The tendency is 

caused since the newly cached contents are less popular than the 

initially cached contents. Furthermore, our proposed policy is 

around 14%-53% reduced in terms of the average latency 

compared with the two reactive policies.    

 

Figure 8: The average latency vs. Zipf parameter.  

The effect of the cache capacity ratio 𝛿 on the average latency 

is shown in Figure 9. In this simulation, we assume 𝛿= 2%, 4%, 6%, 

8% and 10%. Besides, the content size is 400Kb, the transmission 

rate is 50Mbps, the distance between the user and the BS is 10km 

and the distance of the backhaul link is 100km. The cache capacity 

ratio δ  is varied from 2% to 10%.  It can be noticed that the 

average latencies of three policies decrease with the increment of 

the cache capacity ratio. The fact is that a larger cache capacity 

means more contents can be cached. As a result, more long-

distance propagation time consumption from the core network to 

the BS can be avoided. Also, the average latency of our proposed 

policy is around 35%-55% reduced compared with the LFU and 

LRU.  

 

Figure 9: The average latency vs. cache capacity ratio.  

5. Conclusion  

In this paper, a proactive cache policy is proposed in a 

distributed manner to minimise the average latency, as well as 

maximising the cache hit rate. An accurate prediction is achieved 

to make sure the proactive cache policy can have a high cache 

performance. In specific, a BP neural network is applied to predict 

the content popularity, and a PPM algorithm is applied to predict 

the user location. The simulation results (Fig.4 and Fig.5 

simulations) reveal our proposed cache policy is around 10%-38% 

improved in terms of the cache hit rate no matter how the cache 

capacity and Zipf parameter vary, compared with LFU and LRU 

policies. As for the average latency, our proposed policy has at 

least 14% decrease no matter how parameters change, i.e., the 

variation of the content size ( Fig.6 simulation), the transmission 

rate between the user and BS (Fig.7 simulation), the Zipf 

parameter (Fig.8 simulation)  and the cache capacity (Fig.9 

simulation). Consequently, our proposed policy outperforms LFU 

and LRU policies.   
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