

A proactive mobile edge cache policy based on the

prediction by partial matching

Lincan Li, Chiew Foong Kwong, Qianyu Liu

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Nottingham ePrints

https://core.ac.uk/display/369423875?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

University of Nottingham Ningbo China, 199 Taikang East Road, Ningbo,

315100, Zhejiang, China.

First published 2020

This work is made available under the terms of the Creative Commons

Attribution 4.0 International License:

http://creativecommons.org/licenses/by/4.0

The work is licenced to the University of Nottingham Ningbo China
under the Global University Publication Licence:
https://www.nottingham.edu.cn/en/library/documents/research/global
-university-publications-licence-2.0.pdf

http://creativecommons.org/licenses/by/4.0
https://www.nottingham.edu.cn/en/library/documents/research/global-university-publications-licence-2.0.pdf
https://www.nottingham.edu.cn/en/library/documents/research/global-university-publications-licence-2.0.pdf

 1

A proactive mobile edge cache policy based on the prediction by partial matching

Lincan Li1, Chiew Foong Kwong1*, Qianyu Liu2

1Department of Electrical and Electronic Engineering, University of Nottingham Ningbo China, 315100, Ningbo, China

2International Doctoral Innovation Centre, University of Nottingham Ningbo China, 315100, Ningbo, China

*Corresponding author: Chiew Foong Kwong. Email: chiew-foong.kwong@nottingham.edu.cn

A R T I C L E I N F O A B S T R A C T

 The proactive caching has been an emerging approach to cost-effectively boost the

network capacity and reduce access latency. While the performance of which extremely

relies on the content prediction. Therefore, in this paper, a proactive cache policy is

proposed in a distributed manner considering the prediction of the content popularity and

user location to minimise the latency and maximise the cache hit rate. Here, a

backpropagation neural network is applied to predict the content popularity, and prediction

by partial matching is chosen to predict the user location. The simulation results reveal our

proposed cache policy is around 27%-60% improved in the cache hit ratio and 14%-60%

reduced in the average latency, compared with the two conventional reactive policies, i.e.,

LFU and LRU policies.

Keywords:

cache

latency

cache hit rate

content prediction

location prediction

1. Introduction

This article is an extended version of a conference paper

presented in 2018 at the Biomedical Engineering, Healthcare,

Robotics, and Artificial Intelligence 2018 [1].

With the ubiquitous emergence of the smart mobile devices,

e.g., the mobile phones, as well as the trend towards high data rate

applications, exponential mobile data have been generated in the

wireless network while the current network cannot support the fast

growth of the mobile data traffic [2] [3]. As a result, the storage

capacity of the wireless network needs to be expanded and the

conventional way is the dense-deployment of the base stations

(BSs). However, it costs a lot for the mobile operator to upgrade

this infrastructure [4]. Therefore, a more cost-effective approach is

needed and the caching technique is regarded as an ideal approach

[5].

By deploying the cache devices at the edge of the wireless

network in proximity to the users, e.g., BSs and user terminals

(UTs), and storing the popular contents at the cache devices [6] [7],

users can directly retrieve the contents from the edge nodes rather

than the remote core network via the backhaul links [8]. Hence, the

content access latency can be decreased due to the reduced content

transmission distance [9]. In parallel, duplicated requests for the

same contents from the core network to the edge of the network

can be avoided, which reduces the potential data congestion of the

network [10]. Furthermore, due to the increasingly decreased

prices of the cache devices, the storage capacity of the wireless

network can be more cost-effectively boosted compared to the

conventional way [4].

Due to the limited storage capacity of the cache devices, only

a part of the contents can be stored in the edge cache devices.

Hence, multiple works are focusing on how to design an efficient

cache content placement policy. The most common approaches are

least frequently used (LFU) and least recently used (LRU), which

are referred to as reactive cache policies that determine whether to

cache a specific content after it has been requested [11] [12]. In

detail, LRU always caches the most recently requested contents

while LFU caches the most frequently requested contents [13].

While the reactive cache policy is not efficient during peak hours.

Hence, the proactive caching strategy is introduced, by which the

content can be cached before the request, and hence the users can

access the preferred content immediately when they arrive in new

areas.[14] [15].

There are many proactive schemes have been investigated. In

[16], a threshold-based proactive cache scheme based on

reinforcement is presented, aiming at minimising the average

energy cost. In this case, the time variation of the content is

considered, which means the content popularity is changed over

time rather than static. In practice, only the content whose lifetime

is not expired has the potential to be cached. In [17], a caching

scheme is presented to improve the cache hit rate and reduce

energy consumption by predicting the content popularity

distribution. In [18], a proactive cache based on the estimation of

the content popularity is presented, targeting increasing the cache

hit rate and decreasing the content transmission expenditure.

Motivated by deep learning which can improve the accuracy of the

content prediction, many works utilise deep learning for proactive

caching. In [19], deep learning is utilised to predict the future

probability of the content and the predicted content with a high

probability will be cached. In [20], a proactive cache policy is

 2

proposed based on a deep recurrent neural network model which

can predict the future content requests.

Besides, in [21], a proactive cache policy for the vehicular

network is proposed, where the roadside units (RSUs) are

equipped with the cache capability under high mobility of the

moving vehicles. There, a long-short term memory (LSTM)

network is utilised to predict the direction of the moving vehicles.

Then the proactive cache problem is modeled as a Markov

decision process (MDP) problem and solved by a heuristic 휀n-

greedy algorithm. In [22], Gao et al. design a proactive cache

scheme for the hierarchical network where each small base station

(SBS) can perceive the user mobility of its adjacent small base

stations (SBSs), aiming at maximising the cache hit rate and

minimising the transmission latency. In specific, the users with

different moving speeds are clustered into different layers and the

cached content deployment problem is solved by a genetic

algorithm. In [23], a cooperative cache framework is introduced

to increase the cache hit rate and minimise the access latency, in

which the prediction by partial matching (PPM) is utilised to

predict the vehicles’ probability of arriving at the hot areas. The

vehicles with long sojourn time in a hot spot are equipped with

cache capability and are regarded as cache nodes. A summary of

the aforementioned works is shown in Table 1.

Table 1 Summary of existing cache policies.

Policy Contribution

[11] [12]
LFU and LRU are explained to manage the cache content

updating.

[16]

A reinforcement learning-based proactive cache policy is

proposed to minimise energy consumption. Here, content
popularity is a time-varying variable and only the contents whose

lifetime are not expired can be considered to be cached or not.

[17]
An accurate content popularity prediction is adopted to improve

the cache hit rate and reduce energy consumption.

[18]

A proactive cache policy is proposed to increase the cache hit rate

and decrease the content transmission cost. Here, transfer

learning is applied to evaluate the content popularity, and a

greedy algorithm is adopted to deal with the cache problem.

[19]

A deep learning algorithm is applied to predict the future

probability of the content, and the content with a high predicted

probability will be pre-cached.

[20]

A proactive cache policy is proposed to alleviate the data

congestion and reduce the average latency, in which a deep

recurrent neural network algorithm is adopted to predict future

content requests.

[21]

A long-short term memory (LSTM) network is utilised to predict

the direction of the moving vehicles, and the proactive cache

problem is modeled as MDP and solved by a heuristic 휀n-greedy

algorithm.

[22]

A two-layer cache network consisting of several MSBs and SBSs

is proposed to improve the cache hit ratio and reduce the average

latency. Here, the adjacent SBSs can communicate with each
other. Besides, the users with different moving speeds are

clustered into different layers, i.e. the MBS or the SBS.

[23]

A cooperative cache framework is proposed to increase the cache
hit ratio and reduce access latency. Here, a PPM algorithm is

adopted to predict vehicles’ probability of arriving in the hot

areas.

Different from the aforementioned works singly considering

the prediction of the content popularity or the users’ location, this

extended paper designs a proactive cache policy jointly

considering the prediction of the user preference and the user

location to minimise the average latency and maximise the cache

hit rate, which to the best of our knowledge has not been

considered in the prior research works. In detail, a practical

scenario is considered, in which the BSs are distributed and the

users are mobile. A backpropagation (BP) neural network, one of

the deep learning methods, is applied to predict the user

preference based on the historical content requests. Furthermore,

the user’s future location is predicted via PPM which has been

introduced in our previous work [1], and the user’s preferred

content is pre-cached at the location in which the user will highly

arrive. The main contributions of this paper are as follows:

 This paper focuses on minimising the average latency and

maximising the cache hit rate by jointly considering the

content popularity prediction and user location prediction.

 The BP neural network is applied to predict the content

popularity, and PPM is chosen to predict the user location.

 The effect of the several parameters on the cache

performance is investigated, i.e., the Zipf parameter, the

content size, the transmission rate, the distance of the

backhaul link, and the distance between the user and the

BS.

The remainder of this paper is organised as follows. The system

model and the problem formulation are shown in section 2. Section

3 introduces the proactive cache policy. We show the simulation

results in section 4 and conclude in section 5.

2. System model and problem formulation

In this section, we describe the system model, state the

assumption, and formulate the problem.

2.1. System model

For each time slot t whose period is one hour, the proposed
proactive cache policy adopts the PPM algorithm to obtain the
probability of the user arriving at different locations. The location
with the highest value is regarded as the future location. In parallel,
the prediction of the user preference is trained via the BP neural
network. Once the predicted user preference and the future
location are obtained, the popular contents in the user preference
are pre-cached at the future location. Consequently, once the user
arrives in this location in the next time slot (t+1), the user can
immediately obtain the requested content. However, if the
prediction is not accurate, the BS needs to retrieve the requested
content from the core network and then send it to the users, which
imposes a more latency consumption issue.

As shown in Figure 1, the distributed cache architecture consists

of the following network equipment (NE): a core network, ℳ

cache-enabled BSs, and 𝒩 mobile users. The 𝔪𝑡ℎ BS is denoted

by 𝐵𝑆𝓂 for 1 < 𝔪 < ℳ, the 𝓃𝑡ℎ user is denoted by 𝑈𝓃 for 1 <𝓃
< 𝒩, the circular coverage area of 𝐵𝑆𝓂 is denoted as 𝐴𝓂, and the

set of the users served by 𝐵𝑆𝓂 is denoted as 𝑈𝓂. Let ℱ𝑛={𝒻𝓃1,

𝒻𝓃2,…, 𝒻𝓃𝓀} denotes the set of 𝓀 contents requested by 𝑈𝓃. The

content popularity distribution of a user, i.e. user preference,

follows Zipf distribution law [24]. The popularity of the ℜ𝑡ℎ

content requested by 𝑈𝓃 is characterized as:

 3

𝔭𝓃(ℜ, 𝔐, 𝔘) =

1

ℜ𝔐

∑
1

𝔘𝔐
𝔘
1

, (1)

where ℜ is the rank of the content in ℱ𝑛, 𝔐 is the Zipf parameter

for 0< 𝔐<1, and 𝔘 is the total number of contents in ℱ𝑛.

Let ℱ𝑈𝓂
 represents the set of the contents requested at 𝐵𝑆𝓂,

𝔭𝑈𝔪
 represents the content popularity at 𝐵𝑆𝓂 and 𝒞={1,2,…, ℋ}

represents the library of all the contents requested by 𝒩 mobile

users served by ℳ BSs. Assume each BS can store 𝒽 contents at

most for 𝒽< ℋ, and each content has the same size ℬ. Besides,

one user only requests one content at most for each time slot t.

Figure 1: The cache-enabled network.

2.2. Problem formulation

Based on the mention before, our target is to minimise the

access latency 𝔗, which is comprised of the transmission latency

and propagation latency [25]. The transmission latency is caused

by transmitting the content from ENi to ENj [26], in which ENi

and ENj are any two network equipment. According to [27], the

transmission rate ℝ(𝑖,𝑗) is calculated as:

ℝ(𝑖,𝑗)= Blog2(1+
𝜌𝜇

𝜎2), (2)

where B (Hz) is the available spectrum bandwidth, 𝜌 is the

transmitted power, 𝜎2 is the noise power and 𝜇 is the channel gain

between ENi and ENj.

Therefore, the transmission latency 𝔗𝑡(𝑖,𝑗)
𝑐 based on the size of

the requested content 𝑐 and the transmission rate is derived as:

𝔗𝑡(𝑖,𝑗)
𝑐 =

𝒮

ℝ(𝑖,𝑗)
, (3)

where 𝒮 is the size of requested content 𝑐.

The propagation latency 𝔗𝑝(𝑖,𝑗)

𝑐 is defined as the time of

propagating the requested content 𝑐 from ENi to ENj. Affected by

the propagation speed of the electromagnetic wave and the

distance between the ENi and ENj, the propagation latency 𝔗𝑝(𝑖,𝑗)

𝑐

is expressed as:

𝔗𝑝(𝑖,𝑗)

𝑐 =
𝒥(𝑖,𝑗)

𝑣
 , (4)

where 𝑣 is the propagation speed of the electromagnetic wave in

the corresponding channel, 𝒥(𝑖,𝑗) is the distance between ENi and

ENj.

Therefore, the access latency is expressed as:

𝔗 = 𝔗𝑡 (𝑖,𝑗)
𝑐 + 𝔗𝑝(𝑖,𝑗)

𝑐 (5)

 =
𝒮

ℝ(𝑖,𝑗))
 +

𝒥(𝑖,𝑗)

𝑣
. (6)

In detail, the content can be directly retrieved from BS if it is

hit at the BS, i.e., the content is cached at the BS. Hence the

latency 𝔗ℎ𝑖𝑡 of cached content is shown as:

𝔗ℎ𝑖𝑡=
𝒮

ℝ(𝑢,𝑏)
 +

𝒥(𝑢,𝑏)

𝑣ℎ𝑖𝑡
, (7)

where ℝ(𝑢,𝑏) is the transmission rate between a user and a BS,

𝒥(𝑢,𝑏) is the distance between a user and a BS, and 𝑣ℎ𝑖𝑡 is the

propagation speed of the electromagnetic wave in the air.

Otherwise, the content needs to be retrieved from the core

network via the backhaul links if the content is missed at the BS,

i.e., the content is not cached at the BS. According to [28], the

transmission rate ℝ(𝑢,𝑐𝑜𝑟𝑒) from the core network to the BS is

shown as

ℝ(𝑏,𝑐𝑜𝑟𝑒)= R*, (8)

where R* is the maximal transmission rate of the network.

Therefore, the latency of a missed content 𝔗𝑚𝑖𝑠𝑠𝑒𝑑 consisting

of the transmission latency 𝔗𝑡 (𝑢,𝑐𝑜𝑟𝑒)
𝑐 and the propagation latency

of a missed content is expressed as:

𝔗𝑡(𝑢,𝑐𝑜𝑟𝑒)
𝑐 =

𝒮

R∗
+

𝒮

ℝ(𝑢,𝑏)
, (9)

𝔗𝑝(𝑢,𝑐𝑜𝑟𝑒)

𝑐 =
𝒥(𝑢,𝑏)

𝑣ℎ𝑖𝑡
 +

𝒥(𝑏,𝑐𝑜𝑟𝑒)

𝑣𝑏
, (10)

𝔗𝑚𝑖𝑠𝑠𝑒𝑑 =
𝒮

ℝ(𝑢,𝑏)
 +

𝒮

R∗
 +

𝒥(𝑢,𝑏)

𝑣ℎ𝑖𝑡
 +

𝒥(𝑏,𝑐𝑜𝑟𝑒)

𝑣𝑏
, (11)

where 𝒥(𝑢,𝑏) is the distance between the user and the BS, 𝒥(𝑏,𝑐𝑜𝑟𝑒)

is the distance between the BS and the core network, and 𝑣𝑏 is the

propagation speed of the electromagnetic wave in the backhaul

link.

Therefore, the average system latency 𝔗 is calculated as:

𝔗=
∑ [(

𝒮

ℝ(𝑢,𝑏)
+

𝒥(𝑢,𝑏)

𝑣ℎ𝑖𝑡
)+(1−𝒵)(

𝒮

R∗
 +

𝒥(𝑏,𝑐𝑜𝑟𝑒)

𝑣𝑏𝑘
)]𝑁

1

𝑁
, (12)

where 𝒵 is the cache hit rate and is calculated as follows:

𝒵 =
∑ ∑ 𝐹(𝑅𝑖𝑈𝓃

)
𝒢
1

𝒩
𝑛=1

∑ 𝒢𝒩
𝑛=1

 , (13)

where 𝑅𝑖𝑈𝓃
 is the content requests of 𝑈𝓃 , 𝒢 is the number of

request times of 𝑅𝑖𝑈𝓃
. The 𝐹(𝑅𝑖𝑈𝓃

) is calculated as

𝐹(𝑅𝑖𝑈𝓃
) = {

1, 𝑅𝑖𝑈𝓃
𝑖𝑠 𝑐𝑎𝑐ℎ𝑒𝑑

0, 𝑅𝑖𝑈𝓃
 𝑖𝑠 𝑛𝑜𝑡 𝑐𝑐𝑎ℎ𝑒𝑑

 (14)

The problem of minimising the average system latency is

modeled as follows

 4

P_1: min 𝔗 (15)

s.t. 0<𝑣𝑏𝑘<𝑣ℎ𝑖𝑡 ≤3× 108𝑚/𝑠 (16)

0≤ 𝒵 ≤ 1 (17)

3. The proactive cache based on the content popularity

prediction and future location prediction

In this section, a proactive cache policy is proposed to address

P_1. Firstly, the user preference is predicted according to the

backpropagation (BP) neural network. Besides, we introduce the

future location prediction based on the prediction by partial

matching (PPM) algorithm. The proposed cache policy minimises

the average system latency by pre-caching the predicted popular

content at the correspondingly predicted location.

3.1. The content popularity prediction based on backpropagation

neural network

User preference is the content probability distribution of

individual user and content popularity is the content probability

distribution of a cluster of users. Due to the characteristic of the

user preference that a small number of contents account for most

of the data traffic, the cache policy considers caching the popular

content to reduce the complexity of the computation. Hence, the

set of the popular contents of 𝑈𝑛 is denoted as ℙ𝑈𝑛
 ={𝑦𝑈𝑛

1 ,

𝑦𝑈𝑛
2 , …,𝑦𝑈𝑛

𝑘 }, which contains k samples by choosing the top k

contents with the highest probability from the user preference.

Therefore, the set of the popular contents at BSm is denoted as

ℙBS𝑚={ ℙ1, ℙ2, … ℙ𝑈𝑛
… , ℙ𝑈𝑚

}.

After obtaining the popular content database of BSm, the BP

neural network, as shown in Figure 2, is applied to predict the

content popularity. The proposed neural network is comprised of

three layers, namely the input layer, hidden layer, and output layer.

The number of the neuron cells in the input layer and the output

layer is equal to the cache storage 𝑘. The content requests of 𝑈𝑛

are collected each hour and denoted as a training data set. Besides,

two continuous training data sets are chosen to optimise the

parameter of the neural network. The value 𝑦𝑖𝑛 for the input layer

is the request times of the top 𝑘 popular contents in the former

training data set. The value 𝑦𝑟𝑒𝑎𝑙 is the request times of the top 𝑘

popular contents in the latter training data set. Furthermore, mean

squared error (MSE) is utilised as the loss function in the content

prediction. The MSE is formulated as

MSE =
∑ (𝑦𝑟𝑒𝑎𝑙−𝑦𝑝𝑟𝑒)2𝑘

1

𝑘
, (18)

where 𝑦𝑝𝑟𝑒 is the value of the output layer.

Besides, the Relu function is chosen as the activation function,

which is expressed as

𝑅𝑒𝑙𝑢(𝑦𝑖𝑛) = {
0, 𝑦𝑖𝑛 < 0

𝑦𝑖𝑛 , 𝑦𝑖𝑛 ≥ 0
 . (19)

With the help of stochastic gradient descent (SGD), the

proposed neural network can optimally predict the content

popularity after enough training.

Figure 2: The BP neural network.

3.2. The future location prediction based on a prediction by

partial matching

Before the location prediction, the historical location

information is collected from a real environment model as shown

in Figure 3. The areas labeled by red symbols are regarded as the

hot spots with long sojourn time. The historical location

information sequence is denoted as ℒ which is related to the hot

spots.

Figure 3： The user movement model.

After obtaining the historical location information ℒ, PPM is

applied to predict the user’s future location. PPM is a data

compression method based on the finite context and it has been

proven effective for the location prediction [23]. The probability

of the future location y appearing after the given context Con is

model as P(ycon), where Con is the sequence of the location and

the length of the sequence is called order [29]. Furthermore, PPM

proposes an escape mechanism to deal with the zero-frequency

problem [30]. When escape occurs, i.e. y is missed after Con.

Then the PPM outputs an escape probability defined as

Pesc(esc|Con). The computation of PPM is shown in Algorithm

1. Firstly, PPM checks whether y appears after Con. If y appears,

PPM records the number of appearing times and outputs the

probability 𝑃(𝑦|𝐶𝑜𝑛) , otherwise, PPM outputs the escape

probability Pesc(esc|Con). Under the escape situation, PPM

restarts to check whether y appears after the new Con (the order

of which is the original order minus 1). The process is finished

until y appears after Con or the order is -1. The predictive

probability of the future location is the multiple of the sub-

probabilities and the calculation is shown as:

 5

 𝑃 = ∏ 𝑃𝑖
𝑠𝑡𝑒𝑝
1 , (20

𝑃𝑖 = {
𝑃(𝑦|𝐶𝑜𝑛) =

𝑁𝑦

𝑁𝑒𝑠𝑐+𝑁𝐶𝑜𝑛
, 𝑦 𝑎𝑝𝑝𝑒𝑎𝑟𝑠 𝑎𝑓𝑡𝑒𝑟 𝐶𝑜𝑛

𝑃𝑒𝑠𝑐(𝑒𝑠𝑐|𝐶𝑜𝑛) =
𝑁𝑒𝑠𝑐

𝑁𝑒𝑠𝑐+𝑁𝐶𝑜𝑛
, 𝑦 𝑒𝑠𝑐𝑎𝑝𝑒𝑠 𝑎𝑓𝑡𝑒𝑟 𝐶𝑜𝑛

 ,

(21)

where 𝑃𝑖 is the probability of step i, 𝑁𝑦 represents the number of

the times of y appearing after Con, 𝑁𝑒𝑠𝑐 represents the number of

the characters appearing after Con, and 𝑁𝐶𝑜𝑛 represents the

number of the times of all the characters appearing after Con.

Once the probabilities of the possible locations are obtained

via PPM, these obtained probabilities are ranked in descending

order. The location with the highest probability is regarded as the

future location.

Algorithm 1 PPM algorithm

Input: historical data ℒ

Output: the probability P of the future location 𝑦

1 Initialize P=0

2 order = h, j =1

3 if y appears after Con

4 𝑃𝑗=P(y|Con)

 Process finished

5 else

6 𝑃𝑗=P(esc|Con)

7 h - =1, j + =1

8 Restart the step 3-7

9 The process is finished until y appears after Con or h =-1.

Output j, and P=∏ 𝑃𝑗
𝑗
1

Here is an example to help understand PPM computation by

giving a user path {L1, L3} and the future location L4 in the

historical data sequence ℒ ={L1, L2, L3, L4, L5, L1, L3, L1, L4, L1, L2,

L4, L3, L4, L1}. First, since the sequence{ L1, L3, L4 } cannot be

found from the historical data sequence, the escape probability

P(esc| L1, L3) is outputted based on Pesc(esc|Con) in Eq. (21), as

shown in Eq. (22). Then the new order is 1 and consequently, the

new context is { L3 }. The new sequence { L3, L4 } can be found

from the historical date sequence, and therefore the probability

P(L4| L3) is obtained based the 𝑃(𝑦|𝐶𝑜𝑛) in Eq. (21), as shown in

Eq. (23). Finally, the probability P(L4| L1, L3) is obtained based on

Eq. (20), as shown in Eq. (24).

 P(esc| L1, L3) =
𝑁(esc| 𝐿1,𝐿3)

𝑁(esc| 𝐿1,𝐿3)+𝑁(𝐿1| 𝐿1,𝐿3)
 =

1

1+1
 =

1

2
 , (22)

where 𝑁(esc| 𝐿1,𝐿3) is the number of the characters appearing after

{L1, L3}, and 𝑁(𝐿1| 𝐿1,𝐿3) is the number of the times of all the

characters appearing after {L1, L3} since only L1 appears after {L1,
L3}.

P(L4| L3) =
𝑁(𝐿4| 𝐿3)

𝑁(esc| 𝐿3)+𝑁(𝐿4| 𝐿3) +𝑁(𝐿1| 𝐿3)
 =

2

2+2+1
 =

2

5
 , (23)

where 𝑁(𝐿4| 𝐿3) is the number of L4 appearing after L3, 𝑁(esc| 𝐿3) is

the number of the characters appearing after L3 and 𝑁(𝐿1| 𝐿3) is

the number of L1 appearing after L3. The sum of 𝑁(𝐿4| 𝐿3) and

𝑁(𝐿1| 𝐿3) is called the number of the times of all the characters

appearing after L3.

P(L4|L1, L3) = P(esc|L1,L3) × P(L4|L3)=
1

2
×

2

5
=

1

5
 , (24)

3.3. The pre-deployment of the popular content at the future

location

In each time slot t, the users’ future locations in which users

will highly arrive at the next time slot t+1 are predicted via PPM.

In parallel, the user preference at t+1 is predicted via BP neural

network. The top w contents with the highest number of request

times are regarded as the popular contents in the future. After that,

these popular contents are pre-deployed at the corresponding

future location. Hence, in the next time slot t+1, if the prediction

is correct, users can immediately obtain their preferred contents,

which extremely reduces the average system latency.

4. Simulation results and analyzation

In this section, we consider a distributed BS caching network

which consists of 10 BS, 30 users, and 6 locations. The number of

content requests of each user is 3000. The comprehensive

simulation shows the performance of our proposed policy, LFU,

and LRU in terms of the average latency and cache hit rate. The

specific parameter settings are shown in Table 2. The program is

modeled via PyTorch language in Pycharm software.To further

show the improvement of our proposed policy in terms of the

cache hit rate and the reduction of our proposed policy in terms of

the cache hit rate compared with LFU and LRU policies, we

propose the growth ratio 𝒫𝐺 and the reduction ratio 𝒫𝑅 , which are

expressed as:

𝒫𝐺 =
𝒞𝑜𝑢𝑟 − 𝒞𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔

𝒞𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔
, (25)

𝒫𝑅 =
𝔗𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔 − 𝔗

𝑜𝑢𝑟

𝔗𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔
, (26)

where 𝒞𝑜𝑢𝑟 and 𝒞𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔 is the cache hit rate of our proposed

policy and any one of the LFU and LRU policies, respectively.

𝔗𝑜𝑢𝑟 and 𝔗𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔 is the average latency of our proposed policy

and any one of the LFU and LRU policies, respectively.

Table 2: The simulation parameter settings

symbol value

𝑣𝑏𝑘 1 ×107 m/s

𝑣ℎ𝑖𝑡 3 ×108 m/s

ℝ(𝑖,𝑗) 10~50 Mbps

𝜎2 1W

𝜌 3W

 6

𝒥(𝑢,𝑏) 10~50km

𝒥(𝑏𝑠,𝑐𝑜𝑟𝑒) 100km

ℬ

𝔐

𝒬

𝛿

30Kb~450Kb

1.1~1.8

1%~10%

2%~10%

Figure 4 reveals the cache hit rate (represented in percentage) of

our proactive policy and the conventional reactive policies, i.e.,

LFU and LRU. The number of the total content requests is 6000,

the Zipf parameter of each user varies between 1.7 and 1.8.

Besides, to demonstrate the effect of the cache capacity on the

cache performance, we introduce the cache capacity ratio 𝛿 =
𝒽

ℋ
.

And in this simulation, we assume 𝛿= 2%, 4%, 6%, 8% and 10%.

Horizontally, the cache hit rates of LFU, LRU, and our proposed

policy increase with the larger cache capacity ratio. The tendency

demonstrates that increasing the cache capacity can improve the

cache hit rate since more popular contents can be cached. We also

notice that our proactive policy has the highest cache hit rate,

which is around 10-25% higher than that of LFU and LRU

policies, no matter how the Zipf parameter varies. Therefore, our

proposed policy outperforms the other two policies.

Figure 4: The cache hit rate vs. cache capacity ratio 𝛿=
𝒬

ℋ
.

Figure 5 investigates the effect of the Zipf parameter 𝔐 on the

cache hit rate of our proposed policy with the other two policies

as mentioned before. We assume 𝛿 is 10%, and the Zipf parameter

of each user varies in the range [1.1, 1.2], [1.2, 1.3], [1.3, 1.4],

[1.4, 1.5], [1.5, 1.6], [1.6, 1.7] and [1.7, 1.8]. As the Zipf

parameter grows, the cache hit rates of all the cache policies

increase. The reason is that fewer contents are taking up more

content requests as the Zipf parameter grows, and hence the

popular content becomes more popular. Considering the fixed

number of the total content request, the number of content reduces.

With the same capacity, the cache has a higher chance to store

more contents and the cached contents are more popular, which

contributes to a higher cache hit rate. Furthermore, the slopes of

the three curves are gradually reduced. The reason is with the

larger Zipf parameter, the newly cached popular contents have

fewer content requests compared with the initially cached

contents. We also notice that the two reactive policies have a

relatively close cache hit rate, and the cache hit rate of our

proposed policy is around 24%-38% higher than that of the two

reactive policies.

Figure 5:The cache hit rate vs. the Zipf parameter.

The relation between the average latency and the size of the

content is displayed in Figure 6. Here, the size of the content is

30Kb, 200Kb, 200Kb, 250Kb, 300Kb, 350Kb, and 450Kb,

respectively. Besides, we set the cache capacity ratio 𝛿 is 10% and

the fluctuation of the Zipf parameter is between 1.7 and 1.8, the

distance between the user and the BS is 10km and the distance of

the backhaul link is 100km. As the size of the content grows, the

average latencies of all the policies increase. The reason is the

transmitter consumes more time to send the content into the

channel as the size of the content grows. Vertically, the average

latency obtained by our proposed policy is around 60% reduced

compared with LFU and LRU regardless of the size of the content,

which implies our proposed policy outperforms the two reactive

policies.

Figure 6: The average latency vs. the size of the content.

Figure 7 shows the relationship between the average latency and

the transmission rate between the user and BS. Here, the content

size is 400Kb, the storage capacity ratio is 10%, the distance

between the user and the BS is 10km and the distance of the

backhaul link is 100km. The transmission rate between user and

 7

BS is 10Mbps, 20Mbps, 30Mbps, 40Mbps, and 50Mbps,

respectively. As the transmission rate between user and BS grows,

the average latencies of all the policies reduce. The reason is that,

with the larger transmission rate, the latency between the user and

the BS is reduced. Also, the average latency of our proposed

policy is 31%-64% reduced compared with the other two policies.

Figure 7:The average latency vs. transmission rate between the user and the
BS.

As shown in Figure 8, the average latency is plotted as a

function of the Zipf parameter. Here, the Zipf parameter of each

user varies in the range [1.1, 1.2], [1.2, 1.3], [1.3, 1.4], [1.4, 1.5],

[1.5, 1.6], [1.6, 1.7] and [1.7, 1.8], respectively. Besides, the

transmission rate between the user and the BS is 50Mbps, the

content size is 400Kb, the storage capacity ratio 𝛿 is 10%, the

distance between the user and the BS is 10km and the distance of

the backhaul link is 100km. As the Zipf parameter increase, the

average latencies of three policies are reduced. The reason is that,

with the increase of the Zipf parameter, more contents are cached

locally, and hence fewer contents need to be retrieved from the

remote core network. And the latency from the BS is lower than

from the core network. Also, as the Zipf parameter grows, the

slopes of the three curves gradually decrease. The tendency is

caused since the newly cached contents are less popular than the

initially cached contents. Furthermore, our proposed policy is

around 14%-53% reduced in terms of the average latency

compared with the two reactive policies.

Figure 8: The average latency vs. Zipf parameter.

The effect of the cache capacity ratio 𝛿 on the average latency

is shown in Figure 9. In this simulation, we assume 𝛿= 2%, 4%, 6%,

8% and 10%. Besides, the content size is 400Kb, the transmission

rate is 50Mbps, the distance between the user and the BS is 10km

and the distance of the backhaul link is 100km. The cache capacity

ratio δ is varied from 2% to 10%. It can be noticed that the

average latencies of three policies decrease with the increment of

the cache capacity ratio. The fact is that a larger cache capacity

means more contents can be cached. As a result, more long-

distance propagation time consumption from the core network to

the BS can be avoided. Also, the average latency of our proposed

policy is around 35%-55% reduced compared with the LFU and

LRU.

Figure 9: The average latency vs. cache capacity ratio.

5. Conclusion

In this paper, a proactive cache policy is proposed in a

distributed manner to minimise the average latency, as well as

maximising the cache hit rate. An accurate prediction is achieved

to make sure the proactive cache policy can have a high cache

performance. In specific, a BP neural network is applied to predict

the content popularity, and a PPM algorithm is applied to predict

the user location. The simulation results (Fig.4 and Fig.5

simulations) reveal our proposed cache policy is around 10%-38%

improved in terms of the cache hit rate no matter how the cache

capacity and Zipf parameter vary, compared with LFU and LRU

policies. As for the average latency, our proposed policy has at

least 14% decrease no matter how parameters change, i.e., the

variation of the content size (Fig.6 simulation), the transmission

rate between the user and BS (Fig.7 simulation), the Zipf

parameter (Fig.8 simulation) and the cache capacity (Fig.9

simulation). Consequently, our proposed policy outperforms LFU

and LRU policies.

References

[1] L. Li, C. F. Kwong, F. Chen, Q. Liu, and J. Wang,

‘Predicting future location in mobile cache based on

variable order of prediction-by-partial-matching

algorithm’, in IET Conference Publications, 2018, pp.

4–4.

 8

[2] E. Bastug et al., ‘Big data meets telcos: A proactive

caching perspective’, J. Commun. Networks, vol. 17, no.

6, pp. 549–557, 2015.

[3] Cisco, ‘Cisco Annual Internet Report (2018–2023)’,

Cisco, pp. 1–41, 2020.

[4] R. Wang, X. Peng, J. Zhang, and K. B. Letaief,

‘Mobility-aware caching for content-centric wireless

networks: Modeling and methodology’, IEEE Commun.

Mag., vol. 54, no. 8, pp. 77–83, 2016.

[5] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief,

‘A Survey on Mobile Edge Computing: The

Communication Perspective’, IEEE Commun. Surv.

Tutorials, vol. 19, no. 4, pp. 2322–2358, 2017.

[6] F. M. Modesto and A. Boukerche, ‘An analysis of

caching in information-centric vehicular networks’,

IEEE Int. Conf. Commun., 2017.

[7] Y. Li, C. Zhong, M. C. Gursoy, and S. Velipasalar,

‘Learning-based delay-aware caching in wireless D2D

caching networks’, IEEE Access, vol. 6, pp. 77250–

77264, 2018.

[8] S. Zhang, N. Zhang, P. Yang, and X. Shen, ‘Cost-

Effective Cache Deployment in Mobile Heterogeneous

Networks’, IEEE Trans. Veh. Technol., vol. 66, no. 12,

pp. 12264–12276, 2017.

[9] Z. Luo, M. LiWang, Z. Lin, L. Huang, X. Du, and M.

Guizani, ‘Energy-Efficient Caching for Mobile Edge

Computing in 5G Networks’, Appl. Sci., vol. 7, no. 6, p.

557, 2017.

[10] S. Wang, X. Zhang, Y. Zhang, L. Wang, J. Yang, and

W. Wang, ‘A Survey on Mobile Edge Networks:

Convergence of Computing, Caching and

Communications’, IEEE Access, vol. 5, pp. 6757–6779,

2017.

[11] H. Ahlehagh and S. Dey, ‘Video-aware scheduling and

caching in the radio access network’, IEEE/ACM Trans.

Netw., vol. 22, no. 5, pp. 1444–1462, 2014.

[12] S. Shukla, O. Bhardwaj, A. A. Abouzeid, T. Salonidis,

and T. He, ‘Proactive Retention-Aware Caching with

Multi-Path Routing for Wireless Edge Networks’, IEEE

J. Sel. Areas Commun., vol. 36, no. 6, pp. 1286–1299,

2018.

[13] Y. Jiang, M. Ma, M. Bennis, F. C. Zheng, and X. You,

‘User preference learning-based edge caching for fog

radio access network’, IEEE Trans. Commun., vol. 67,

no. 2, pp. 1268–1283, 2019.

[14] N. Golrezaei, A. Molisch, A. G. Dimakis, and G. Caire,

‘Femtocaching and device-to-device collaboration: A

new architecture for wireless video distribution’, IEEE

Commun. Mag., vol. 51, no. 4, pp. 142–149, 2013.

[15] E. Bastug, M. Bennis, and M. Debbah, ‘Living on the

edge: The role of proactive caching in 5G wireless

networks’, IEEE Commun. Mag., vol. 52, no. 8, pp. 82–

89, 2014.

[16] S. O. Somuyiwa, A. Gyorgy, and D. Gunduz, ‘A

Reinforcement-Learning Approach to Proactive Caching

in Wireless Networks’, IEEE J. Sel. Areas Commun.,

vol. 36, no. 6, pp. 1331–1344, 2018.

[17] M. Yan et al., ‘Assessing the energy consumption of 5G

wireless edge caching’, 2019 IEEE Int. Conf. Commun.

Work. ICC Work. 2019 - Proc., vol. 7, 2019.

[18] T. Hou, G. Feng, S. Qin, and W. Jiang, ‘Proactive

Content Caching by Exploiting Transfer Learning for

Mobile Edge Computing’, GLOBECOM 2017 - 2017

IEEE Glob. Commun. Conf., pp. 1–6, 2017.

[19] K. Thar, N. H. Tran, T. Z. Oo, and C. S. Hong,

‘DeepMEC: Mobile edge caching using deep learning’,

IEEE Access, vol. 6, pp. 78260–78275, 2018.

[20] L. Ale, N. Zhang, H. Wu, D. Chen, and T. Han, ‘Online

proactive caching in mobile edge computing using

bidirectional deep recurrent neural network’, IEEE

Internet Things J., vol. 6, no. 3, pp. 5520–5530, 2019.

[21] L. Hou, L. Lei, K. Zheng, and X. Wang, ‘A Q -

Learning-Based Proactive Caching Strategy for Non-

Safety Related Services in Vehicular Networks’, IEEE

Internet Things J., vol. 6, no. 3, pp. 4512–4520, 2019.

[22] N. Gao, X. Xu, Y. Hou, and L. Gao, ‘A Mobility-aware

Proactive Caching Strategy in Heterogeneous Ultra-

Dense Networks’, IEEE Int. Symp. Pers. Indoor Mob.

Radio Commun. PIMRC, vol. 2019–Septe, 2019.

[23] L. Yao, A. Chen, J. Deng, J. Wang, and G. Wu, ‘A

Cooperative Caching Scheme Based on Mobility

Prediction in Vehicular Content Centric Networks’,

IEEE Trans. Veh. Technol., vol. 9545, no. c, pp. 1–10,

2017.

[24] D. Liu and C. Yang, ‘Caching at Base Stations with

Heterogeneous User Demands and Spatial Locality’,

IEEE Trans. Commun., vol. 67, no. 2, pp. 1554–1569,

2019.

[25] F. Jiang, Z. Yuan, C. Sun, and J. Wang, ‘Deep Q-

Learning-Based Content Caching With Update Strategy

for Fog Radio Access Networks’, IEEE Access, vol. 7,

pp. 97505–97514, 2019.

[26] Y. Li, M. C. Gursoy, and S. Velipasalar, ‘A delay-aware

caching algorithm for wireless D2D caching networks’,

2017 IEEE Conf. Comput. Commun. Work. INFOCOM

WKSHPS 2017, pp. 456–461, 2017.

[27] H. Wu, J. Zhang, Z. Cai, F. Liu, Y. Li, and A. Liu,

‘Towards Energy-Aware Caching for Intelligent

Connected Vehicles’, IEEE Internet Things J., vol. 4662,

no. c, pp. 1–1, 2020.

[28] J. Zhang et al., Joint resource allocation for

latency−sensitive services over mobile edge computing

 9

networks with caching, vol. 6, no. 3. IEEE, p.

4283−4294.

[29] I. Burbey and T. L. Martin, ‘Predicting future locations

using prediction-by-partial-match’, Proc. first ACM Int.

Work. Mob. entity localization Track. GPS-less Environ.

- MELT ’08, p. 1, 2008.

[30] S. K. Pulliyakode and S. Kalyani, ‘A Modified PPM

Algorithm for Online Sequence Prediction Using Short

Data Records’, IEEE Commun. Lett., vol. 19, no. 3, pp.

423–426, 2015.

