2,906 research outputs found

    A Fixed-Point Algorithm for Closed Queueing Networks

    Get PDF
    In this paper we propose a new efficient iterative scheme for solving closed queueing networks with phase-type service time distributions. The method is especially efficient and accurate in case of large numbers of nodes and large customer populations. We present the method, put it in perspective, and validate it through a large number of test scenarios. In most cases, the method provides accuracies within 5% relative error (in comparison to discrete-event simulation)

    Rejoinder on: queueing models for the analysis of communication systems

    Get PDF
    In this rejoinder, we respond to the comments and questions of three discussants of our paper on queueing models for the analysis of communication systems. Our responses are structured around two main topics: discrete-time modeling and further extensions of the presented queueing analysis

    Power series approximations for two-class generalized processor sharing systems

    Get PDF
    We develop power series approximations for a discrete-time queueing system with two parallel queues and one processor. If both queues are nonempty, a customer of queue 1 is served with probability beta, and a customer of queue 2 is served with probability 1-beta. If one of the queues is empty, a customer of the other queue is served with probability 1. We first describe the generating function U(z (1),z (2)) of the stationary queue lengths in terms of a functional equation, and show how to solve this using the theory of boundary value problems. Then, we propose to use the same functional equation to obtain a power series for U(z (1),z (2)) in beta. The first coefficient of this power series corresponds to the priority case beta=0, which allows for an explicit solution. All higher coefficients are expressed in terms of the priority case. Accurate approximations for the mean stationary queue lengths are obtained from combining truncated power series and Pad, approximation

    Stability Region of a Slotted Aloha Network with K-Exponential Backoff

    Full text link
    Stability region of random access wireless networks is known for only simple network scenarios. The main problem in this respect is due to interaction among queues. When transmission probabilities during successive transmissions change, e.g., when exponential backoff mechanism is exploited, the interactions in the network are stimulated. In this paper, we derive the stability region of a buffered slotted Aloha network with K-exponential backoff mechanism, approximately, when a finite number of nodes exist. To this end, we propose a new approach in modeling the interaction among wireless nodes. In this approach, we model the network with inter-related quasi-birth-death (QBD) processes such that at each QBD corresponding to each node, a finite number of phases consider the status of the other nodes. Then, by exploiting the available theorems on stability of QBDs, we find the stability region. We show that exponential backoff mechanism is able to increase the area of the stability region of a simple slotted Aloha network with two nodes, more than 40\%. We also show that a slotted Aloha network with exponential backoff may perform very near to ideal scheduling. The accuracy of our modeling approach is verified by simulation in different conditions.Comment: 30 pages, 6 figure

    Two-dimensional fluid queues with temporary assistance

    Full text link
    We consider a two-dimensional stochastic fluid model with NN ON-OFF inputs and temporary assistance, which is an extension of the same model with N=1N = 1 in Mahabhashyam et al. (2008). The rates of change of both buffers are piecewise constant and dependent on the underlying Markovian phase of the model, and the rates of change for Buffer 2 are also dependent on the specific level of Buffer 1. This is because both buffers share a fixed output capacity, the precise proportion of which depends on Buffer 1. The generalization of the number of ON-OFF inputs necessitates modifications in the original rules of output-capacity sharing from Mahabhashyam et al. (2008) and considerably complicates both the theoretical analysis and the numerical computation of various performance measures
    corecore