44,284 research outputs found

    Computation of the Marcum Q-function

    Get PDF
    Methods and an algorithm for computing the generalized Marcum QQ-function (Qμ(x,y)Q_{\mu}(x,y)) and the complementary function (Pμ(x,y)P_{\mu}(x,y)) are described. These functions appear in problems of different technical and scientific areas such as, for example, radar detection and communications, statistics and probability theory, where they are called the non-central chi-square or the non central gamma cumulative distribution functions. The algorithm for computing the Marcum functions combines different methods of evaluation in different regions: series expansions, integral representations, asymptotic expansions, and use of three-term homogeneous recurrence relations. A relative accuracy close to 101210^{-12} can be obtained in the parameter region (x,y,μ)[0,A]×[0,A]×[1,A](x,y,\mu) \in [0,\,A]\times [0,\,A]\times [1,\,A], A=200A=200, while for larger parameters the accuracy decreases (close to 101110^{-11} for A=1000A=1000 and close to 5×10115\times 10^{-11} for A=10000A=10000).Comment: Accepted for publication in ACM Trans. Math. Soft

    Evaluating parametric holonomic sequences using rectangular splitting

    Full text link
    We adapt the rectangular splitting technique of Paterson and Stockmeyer to the problem of evaluating terms in holonomic sequences that depend on a parameter. This approach allows computing the nn-th term in a recurrent sequence of suitable type using O(n1/2)O(n^{1/2}) "expensive" operations at the cost of an increased number of "cheap" operations. Rectangular splitting has little overhead and can perform better than either naive evaluation or asymptotically faster algorithms for ranges of nn encountered in applications. As an example, fast numerical evaluation of the gamma function is investigated. Our work generalizes two previous algorithms of Smith.Comment: 8 pages, 2 figure

    Derivatives of the Incomplete Beta Function

    Get PDF
    The incomplete beta function is defined as where Beta(p, q) is the beta function. Dutka (1981) gave a history of the development and numerical evaluation of this function. In this article, an algorithm for computing first and second derivatives of Ix,p,q with respect to p and q is described. The algorithm is useful, for example, when fitting parameters to a censored beta, truncated beta, or a truncated beta-binomial model.

    On the computation of moments of the partial non-central chi-squared distribution function

    Get PDF
    Properties satisfied by the moments of the partial non-central chi-square distribution function, also known as Nuttall Q-functions, and methods for computing these moments are discussed in this paper. The Nuttall Q-function is involved in the study of a variety of problems in different fields, as for example digital communications.Comment: 6 page

    Computing hypergeometric functions rigorously

    Get PDF
    We present an efficient implementation of hypergeometric functions in arbitrary-precision interval arithmetic. The functions 0F1{}_0F_1, 1F1{}_1F_1, 2F1{}_2F_1 and 2F0{}_2F_0 (or the Kummer UU-function) are supported for unrestricted complex parameters and argument, and by extension, we cover exponential and trigonometric integrals, error functions, Fresnel integrals, incomplete gamma and beta functions, Bessel functions, Airy functions, Legendre functions, Jacobi polynomials, complete elliptic integrals, and other special functions. The output can be used directly for interval computations or to generate provably correct floating-point approximations in any format. Performance is competitive with earlier arbitrary-precision software, and sometimes orders of magnitude faster. We also partially cover the generalized hypergeometric function pFq{}_pF_q and computation of high-order parameter derivatives.Comment: v2: corrected example in section 3.1; corrected timing data for case E-G in section 8.5 (table 6, figure 2); adjusted paper siz

    On the probability that all eigenvalues of Gaussian, Wishart, and double Wishart random matrices lie within an interval

    Full text link
    We derive the probability that all eigenvalues of a random matrix M\bf M lie within an arbitrary interval [a,b][a,b], ψ(a,b)Pr{aλmin(M),λmax(M)b}\psi(a,b)\triangleq\Pr\{a\leq\lambda_{\min}({\bf M}), \lambda_{\max}({\bf M})\leq b\}, when M\bf M is a real or complex finite dimensional Wishart, double Wishart, or Gaussian symmetric/Hermitian matrix. We give efficient recursive formulas allowing the exact evaluation of ψ(a,b)\psi(a,b) for Wishart matrices, even with large number of variates and degrees of freedom. We also prove that the probability that all eigenvalues are within the limiting spectral support (given by the Mar{\v{c}}enko-Pastur or the semicircle laws) tends for large dimensions to the universal values 0.69210.6921 and 0.93970.9397 for the real and complex cases, respectively. Applications include improved bounds for the probability that a Gaussian measurement matrix has a given restricted isometry constant in compressed sensing.Comment: IEEE Transactions on Information Theory, 201
    corecore