6,252 research outputs found

    Real-Time Automatic Linear Feature Detection in Images

    Get PDF
    Linear feature detection in digital images is an important low-level operation in computer vision that has many applications. In remote sensing tasks, it can be used to extract roads, railroads, and rivers from satellite or low-resolution aerial images, which can be used for the capture or update of data for geographic information and navigation systems. In addition, it is useful in medical imaging for the extraction of blood vessels from an X-ray angiography or the bones in the skull from a CT or MR image. It also can be applied in horticulture for underground plant root detection in minirhizotron images. In this dissertation, a fast and automatic algorithm for linear feature extraction from images is presented. Under the assumption that linear feature is a sequence of contiguous pixels where the image intensity is locally maximal in the direction of the gradient, linear features are extracted as non-overlapping connected line segments consisting of these contiguous pixels. To perform this task, point process is used to model line segments network in images. Specific properties of line segments in an image are described by an intensity energy model. Aligned segments are favored while superposition is penalized. These constraints are enforced by an interaction energy model. Linear features are extracted from the line segments network by minimizing a modified Candy model energy function using a greedy algorithm whose parameters are determined in a data-driven manner. Experimental results from a collection of different types of linear features (underground plant roots, blood vessels and urban roads) in images demonstrate the effectiveness of the approach

    The automatic detection subsystem

    Get PDF
    Marques, M. M., Lobo, V., Aguiar, A. P., Silva, J. E., de Sousa, J. B., Nunes, M. D. F., Ribeiro, R. A., Bernardino, A., Cruz, G., & Marques, J. S. (2021). An unmanned aircraft system for maritime operations: The automatic detection subsystem. Marine Technology Society Journal, 55(1), 38-49. https://doi.org/10.4031/MTSJ.55.1.4 --- This work was funded by POFC (Programa Operacional Factores de Competitividade) within the National Strategic Reference Framework (QREN) under grant agreement 2013/034063 (SEAGULL, Project Number 34063).This paper addresses the development of an integrated system to support maritime situation awareness based on unmanned aerial vehicles (UAVs), empha-sizing the role of the automatic detection subsystem. One of the main topics of research in the SEAGULL project was the automatic detection of sea vessels from sensors onboard the UAV, to help human operators in the generation of situational awareness of maritime events such as (a) detection and geo-referencing of oil spills or hazardous and noxious substances, (b) tracking systems (e.g., vessels, ship-wrecks, lifeboats, debris), (c) recognizing behavioral patterns (e.g., vessels rendez-vous, high-speed vessels, atypical patterns of navigation), and (d) monitoring environmental parameters and indicators. We describe a system composed of optical sensors, an embedded computer, communication systems, and a vessel detection algorithm that can run in real time in the embedded UAV hardware and provide to human operators vessel detections with low latency, high precision rates (about 99%), and suitable recalls (>50%), which is comparable to other more computationally intensive state-of-the-art approaches. Field test results, including the detection of lifesavers and multiple vessels in red-green-and-blue (RGB) and thermal images, are presented and discussed.publishersversionpublishe

    Delineation of line patterns in images using B-COSFIRE filters

    Get PDF
    Delineation of line patterns in images is a basic step required in various applications such as blood vessel detection in medical images, segmentation of rivers or roads in aerial images, detection of cracks in walls or pavements, etc. In this paper we present trainable B-COSFIRE filters, which are a model of some neurons in area V1 of the primary visual cortex, and apply it to the delineation of line patterns in different kinds of images. B-COSFIRE filters are trainable as their selectivity is determined in an automatic configuration process given a prototype pattern of interest. They are configurable to detect any preferred line structure (e.g. segments, corners, cross-overs, etc.), so usable for automatic data representation learning. We carried out experiments on two data sets, namely a line-network data set from INRIA and a data set of retinal fundus images named IOSTAR. The results that we achieved confirm the robustness of the proposed approach and its effectiveness in the delineation of line structures in different kinds of images.Comment: International Work Conference on Bioinspired Intelligence, July 10-13, 201

    Detection of curved lines with B-COSFIRE filters: A case study on crack delineation

    Full text link
    The detection of curvilinear structures is an important step for various computer vision applications, ranging from medical image analysis for segmentation of blood vessels, to remote sensing for the identification of roads and rivers, and to biometrics and robotics, among others. %The visual system of the brain has remarkable abilities to detect curvilinear structures in noisy images. This is a nontrivial task especially for the detection of thin or incomplete curvilinear structures surrounded with noise. We propose a general purpose curvilinear structure detector that uses the brain-inspired trainable B-COSFIRE filters. It consists of four main steps, namely nonlinear filtering with B-COSFIRE, thinning with non-maximum suppression, hysteresis thresholding and morphological closing. We demonstrate its effectiveness on a data set of noisy images with cracked pavements, where we achieve state-of-the-art results (F-measure=0.865). The proposed method can be employed in any computer vision methodology that requires the delineation of curvilinear and elongated structures.Comment: Accepted at Computer Analysis of Images and Patterns (CAIP) 201

    A ribbon of twins for extracting vessel boundaries

    Get PDF
    This paper presents an efficient model for automatic detection and extraction of blood vessels in ocular fundus images. The model is formed using a combination of the concept of ribbon snakes and twin snakes. On each edge, the twin concept is introduced by using two snakes, one inside and one outside the boundary. The ribbon concept integrates the pair of twins on the two vessel edges into a single ribbon. The twins maintain the consistency of the vessel width, particularly on very blurred, thin and noisy vessels. The model exhibits excellent performance in extracting the boundaries of vessels, with improved robustness compared to alternative models in the presence of occlusion, poor contrast or noise. Results are presented which demonstrate the performance of the discussed edge extraction method, and show a significant improvement compared to classical snake formulations
    • …
    corecore