45,576 research outputs found

    Graphettes: Constant-time determination of graphlet and orbit identity including (possibly disconnected) graphlets up to size 8.

    Get PDF
    Graphlets are small connected induced subgraphs of a larger graph G. Graphlets are now commonly used to quantify local and global topology of networks in the field. Methods exist to exhaustively enumerate all graphlets (and their orbits) in large networks as efficiently as possible using orbit counting equations. However, the number of graphlets in G is exponential in both the number of nodes and edges in G. Enumerating them all is already unacceptably expensive on existing large networks, and the problem will only get worse as networks continue to grow in size and density. Here we introduce an efficient method designed to aid statistical sampling of graphlets up to size k = 8 from a large network. We define graphettes as the generalization of graphlets allowing for disconnected graphlets. Given a particular (undirected) graphette g, we introduce the idea of the canonical graphette [Formula: see text] as a representative member of the isomorphism group Iso(g) of g. We compute the mapping [Formula: see text], in the form of a lookup table, from all 2k(k - 1)/2 undirected graphettes g of size k ≤ 8 to their canonical representatives [Formula: see text], as well as the permutation that transforms g to [Formula: see text]. We also compute all automorphism orbits for each canonical graphette. Thus, given any k ≤ 8 nodes in a graph G, we can in constant time infer which graphette it is, as well as which orbit each of the k nodes belongs to. Sampling a large number N of such k-sets of nodes provides an approximation of both the distribution of graphlets and orbits across G, and the orbit degree vector at each node

    Efficient detection of periodic orbits in chaotic systems by stabilising transformations

    Full text link
    An algorithm for detecting periodic orbits in chaotic systems [Phys. Rev. E, 60 (1999), pp.~6172--6175], which combines the set of stabilising transformations proposed by Schmelcher and Diakonos [Phys. Rev. Lett., 78 (1997), pp.~4733--4736] with a modified semi-implicit Euler iterative scheme and seeding with periodic orbits of neighbouring periods, has been shown to be highly efficient when applied to low-dimensional systems. The difficulty in applying the algorithm to higher-dimensional systems is mainly due to the fact that the number of the stabilising transformations grows extremely fast with increasing system dimension. Here we analyse the properties of stabilising transformations and propose an alternative approach for constructing a smaller set of transformations. The performance of the new approach is illustrated on the four-dimentional kicked double rotor map and the six-dimensional system of three coupled Henon maps
    • …
    corecore