4 research outputs found

    An algorithm for energy-efficient bluetooth scatternet formation and maintenance

    Get PDF
    We discuss an energy-efficient, distributed Bluetooth Scatternet Formation algorithm based on Device and Link characteristics (SF-DeviL). SF-DeviL forms multihop scatternets with tree topologies and increases battery lif etimes of devices by using device types, battery levels and received signal strengths. The topology is dynamically reconfigured in SF-DeviL by depleting battery levels and it is shown through simulations that the network lifetime is increased by at least 32% compared to LMS algorithm [1]

    Energy efficiency in short and wide-area IoT technologies—A survey

    Get PDF
    In the last years, the Internet of Things (IoT) has emerged as a key application context in the design and evolution of technologies in the transition toward a 5G ecosystem. More and more IoT technologies have entered the market and represent important enablers in the deployment of networks of interconnected devices. As network and spatial device densities grow, energy efficiency and consumption are becoming an important aspect in analyzing the performance and suitability of different technologies. In this framework, this survey presents an extensive review of IoT technologies, including both Low-Power Short-Area Networks (LPSANs) and Low-Power Wide-Area Networks (LPWANs), from the perspective of energy efficiency and power consumption. Existing consumption models and energy efficiency mechanisms are categorized, analyzed and discussed, in order to highlight the main trends proposed in literature and standards toward achieving energy-efficient IoT networks. Current limitations and open challenges are also discussed, aiming at highlighting new possible research directions

    Sf-devil: an algorithm for energy-efficient bluetooth scatternet formation and maintenance

    Get PDF
    Bluetooth is a short-range ad hoc networking technology, which enables formation of inexpensive personal area networks with low power consumption. Using Bluetooth technology, a small number of closely located devices can be interconnected within a piconet. Building larger ad hoc networks is possible by interconnecting multiple piconets to form a scatternet. As the Bluetooth topology grows from isolated piconets to a scatternet, energy-efficiency becomes a critical issue since additional power is consumed for multi-hop routing. A scatternet should be formed in such a way that batteries of mobile devices are efficiently used in order to lengthen scatternet lifetime. We discuss the problem of energy-efficient topology construction and maintenance for Bluetooth scatternets. An energy-efficient, distributed Bluetooth Scatternet Formation algorithm based on Device and Link characteristics (SF-DeviL) is presented. SF-DeviL forms scatternets with tree topologies and increases battery lifetimes of devices by using device types, battery levels and received signal strengths. The topology is dynamically reconfigured in SF-DeviL so that energy efficiency is maintained during the lifetime of the scatternet. It is shown through simulations that even without performing reconfiguration the network lifetime is increased by at least 229 % compared to LMS algorithm and increased by at least 10 % compared to BlueMesh algorithm in heterogeneous networks
    corecore