242 research outputs found

    An algebraic multigrid method for Q2βˆ’Q1Q_2-Q_1 mixed discretizations of the Navier-Stokes equations

    Full text link
    Algebraic multigrid (AMG) preconditioners are considered for discretized systems of partial differential equations (PDEs) where unknowns associated with different physical quantities are not necessarily co-located at mesh points. Specifically, we investigate a Q2βˆ’Q1Q_2-Q_1 mixed finite element discretization of the incompressible Navier-Stokes equations where the number of velocity nodes is much greater than the number of pressure nodes. Consequently, some velocity degrees-of-freedom (dofs) are defined at spatial locations where there are no corresponding pressure dofs. Thus, AMG approaches leveraging this co-located structure are not applicable. This paper instead proposes an automatic AMG coarsening that mimics certain pressure/velocity dof relationships of the Q2βˆ’Q1Q_2-Q_1 discretization. The main idea is to first automatically define coarse pressures in a somewhat standard AMG fashion and then to carefully (but automatically) choose coarse velocity unknowns so that the spatial location relationship between pressure and velocity dofs resembles that on the finest grid. To define coefficients within the inter-grid transfers, an energy minimization AMG (EMIN-AMG) is utilized. EMIN-AMG is not tied to specific coarsening schemes and grid transfer sparsity patterns, and so it is applicable to the proposed coarsening. Numerical results highlighting solver performance are given on Stokes and incompressible Navier-Stokes problems.Comment: Submitted to a journa

    Preconditioning and fast solvers for incompressible flow

    Get PDF
    We give a brief description with references of work on fast solution methods for incompressible Navier-Stokes problems which has been going on for about a decade. Specifically we describe preconditioned iterative strategies which involve the use of simple multigrid cycles for subproblems

    Discretizations & Efficient Linear Solvers for Problems Related to Fluid Flow

    Get PDF
    Numerical solutions to fluid flow problems involve solving the linear systems arising from the discretization of the Stokes equation or a variant of it, which often have a saddle point structure and are difficult to solve. Geometric multigrid is a parallelizable method that can efficiently solve these linear systems especially for a large number of unknowns. We consider two approaches to solve these linear systems using geometric multigrid: First, we use a block preconditioner and apply geometric multigrid as in inner solver to the velocity block only. We develop deal.II tutorial step-56 to compare the use of geometric multigrid to other popular alternatives. This method is found to be competitive in serial computations in terms of performance and memory usage. Second, we design a special smoother to apply multigrid to the whole linear system. This smoother is analyzed as a Schwarz method using conforming and inf-sup stable discretization spaces. The resulting method is found to be competitive to a similar multigrid method using non-conforming finite elements that were studied by Kanschat and Mao. This approach has the potential to be superior to the first approach. Finally, expanding on the research done by Dannberg and Heister, we explore the analysis of a three-field Stokes formulation that is used to describe melt migration in the earth\u27s mantle. Multiple discretizations were studied to find the best one to use in the ASPECT software package. We also explore improvements to ASPECT\u27s linear solvers for this formulation utilizing block preconditioners and algebraic multigrid

    An assessment of solvers for saddle point problems emerging from the incompressible Navier--Stokes equations

    Get PDF
    Efficient incompressible flow simulations, using inf-sup stable pairs of finite element spaces, require the application of efficient solvers for the arising linear saddle point problems. This paper presents an assessment of different solvers: the sparse direct solver UMFPACK, the flexible GMRES (FGMRES) method with different coupled multigrid preconditioners, and FGMRES with Least Squares Commutator (LSC) preconditioners. The assessment is performed for steady-state and time-dependent flows around cylinders in 2d and 3d. Several pairs of inf-sup stable finite element spaces with second order velocity and first order pressure are used. It turns out that for the steady-state problems often FGMRES with an appropriate multigrid preconditioner was the most efficient method on finer grids. For the time-dependent problems, FGMRES with LSC preconditioners that use an inexact iterative solution of the velocity subproblem worked best for smaller time steps

    Robust Preconditioners for Incompressible MHD Models

    Full text link
    In this paper, we develop two classes of robust preconditioners for the structure-preserving discretization of the incompressible magnetohydrodynamics (MHD) system. By studying the well-posedness of the discrete system, we design block preconditioners for them and carry out rigorous analysis on their performance. We prove that such preconditioners are robust with respect to most physical and discretization parameters. In our proof, we improve the existing estimates of the block triangular preconditioners for saddle point problems by removing the scaling parameters, which are usually difficult to choose in practice. This new technique is not only applicable to the MHD system, but also to other problems. Moreover, we prove that Krylov iterative methods with our preconditioners preserve the divergence-free condition exactly, which complements the structure-preserving discretization. Another feature is that we can directly generalize this technique to other discretizations of the MHD system. We also present preliminary numerical results to support the theoretical results and demonstrate the robustness of the proposed preconditioners

    IFISS : a computational laboratory for investigating incompressible flow problems

    Get PDF
    The IFISS Incompressible Flow & Iterative Solver Software package contains software which can be run with MATLAB or Octave to create a computational laboratory for the interactive numerical study of incompressible flow problems. It includes algorithms for discretization by mixed finite element methods and a posteriori error estimation of the computed solutions, together with state-of-the-art preconditioned iterative solvers for the resulting discrete linear equation systems. In this paper we give a flavour of the code's main features and illustrate its applicability using several case studies. We aim to show that IFISS can be a valuable tool in both teaching and research

    Local Fourier analysis for saddle-point problems

    Get PDF
    The numerical solution of saddle-point problems has attracted considerable interest in recent years, due to their indefiniteness and often poor spectral properties that make efficient solution difficult. While much research already exists, developing efficient algorithms remains challenging. Researchers have applied finite-difference, finite element, and finite-volume approaches successfully to discretize saddle-point problems, and block preconditioners and monolithic multigrid methods have been proposed for the resulting systems. However, there is still much to understand. Magnetohydrodynamics (MHD) models the flow of a charged fluid, or plasma, in the presence of electromagnetic fields. Often, the discretization and linearization of MHD leads to a saddle-point system. We present vector-potential formulations of MHD and a theoretical analysis of the existence and uniqueness of solutions of both the continuum two-dimensional resistive MHD model and its discretization. Local Fourier analysis (LFA) is a commonly used tool for the analysis of multigrid and other multilevel algorithms. We first adapt LFA to analyse the properties of multigrid methods for both finite-difference and finite-element discretizations of the Stokes equations, leading to saddle-point systems. Monolithic multigrid methods, based on distributive, Braess-Sarazin, and Uzawa relaxation are discussed. From this LFA, optimal parameters are proposed for these multigrid solvers. Numerical experiments are presented to validate our theoretical results. A modified two-level LFA is proposed for high-order finite-element methods for the Lapalce problem, curing the failure of classical LFA smoothing analysis in this setting and providing a reliable way to estimate actual multigrid performance. Finally, we extend LFA to analyze the balancing domain decomposition by constraints (BDDC) algorithm, using a new choice of basis for the space of Fourier harmonics that greatly simplifies the application of LFA. Improved performance is obtained for some two- and three-level variants
    • …
    corecore