11,519 research outputs found

    One-Class Classification: Taxonomy of Study and Review of Techniques

    Full text link
    One-class classification (OCC) algorithms aim to build classification models when the negative class is either absent, poorly sampled or not well defined. This unique situation constrains the learning of efficient classifiers by defining class boundary just with the knowledge of positive class. The OCC problem has been considered and applied under many research themes, such as outlier/novelty detection and concept learning. In this paper we present a unified view of the general problem of OCC by presenting a taxonomy of study for OCC problems, which is based on the availability of training data, algorithms used and the application domains applied. We further delve into each of the categories of the proposed taxonomy and present a comprehensive literature review of the OCC algorithms, techniques and methodologies with a focus on their significance, limitations and applications. We conclude our paper by discussing some open research problems in the field of OCC and present our vision for future research.Comment: 24 pages + 11 pages of references, 8 figure

    Design for novel enhanced weightless neural network and multi-classifier.

    Get PDF
    Weightless neural systems have often struggles in terms of speed, performances, and memory issues. There is also lack of sufficient interfacing of weightless neural systems to others systems. Addressing these issues motivates and forms the aims and objectives of this thesis. In addressing these issues, algorithms are formulated, classifiers, and multi-classifiers are designed, and hardware design of classifier are also reported. Specifically, the purpose of this thesis is to report on the algorithms and designs of weightless neural systems. A background material for the research is a weightless neural network known as Probabilistic Convergent Network (PCN). By introducing two new and different interfacing method, the word "Enhanced" is added to PCN thereby giving it the name Enhanced Probabilistic Convergent Network (EPCN). To solve the problem of speed and performances when large-class databases are employed in data analysis, multi-classifiers are designed whose composition vary depending on problem complexity. It also leads to the introduction of a novel gating function with application of EPCN as an intelligent combiner. For databases which are not very large, single classifiers suffices. Speed and ease of application in adverse condition were considered as improvement which has led to the design of EPCN in hardware. A novel hashing function is implemented and tested on hardware-based EPCN. Results obtained have indicated the utility of employing weightless neural systems. The results obtained also indicate significant new possible areas of application of weightless neural systems

    A Multi-Engine Approach to Answer Set Programming

    Full text link
    Answer Set Programming (ASP) is a truly-declarative programming paradigm proposed in the area of non-monotonic reasoning and logic programming, that has been recently employed in many applications. The development of efficient ASP systems is, thus, crucial. Having in mind the task of improving the solving methods for ASP, there are two usual ways to reach this goal: (i)(i) extending state-of-the-art techniques and ASP solvers, or (ii)(ii) designing a new ASP solver from scratch. An alternative to these trends is to build on top of state-of-the-art solvers, and to apply machine learning techniques for choosing automatically the "best" available solver on a per-instance basis. In this paper we pursue this latter direction. We first define a set of cheap-to-compute syntactic features that characterize several aspects of ASP programs. Then, we apply classification methods that, given the features of the instances in a {\sl training} set and the solvers' performance on these instances, inductively learn algorithm selection strategies to be applied to a {\sl test} set. We report the results of a number of experiments considering solvers and different training and test sets of instances taken from the ones submitted to the "System Track" of the 3rd ASP Competition. Our analysis shows that, by applying machine learning techniques to ASP solving, it is possible to obtain very robust performance: our approach can solve more instances compared with any solver that entered the 3rd ASP Competition. (To appear in Theory and Practice of Logic Programming (TPLP).)Comment: 26 pages, 8 figure

    Recent Advances in Transfer Learning for Cross-Dataset Visual Recognition: A Problem-Oriented Perspective

    Get PDF
    This paper takes a problem-oriented perspective and presents a comprehensive review of transfer learning methods, both shallow and deep, for cross-dataset visual recognition. Specifically, it categorises the cross-dataset recognition into seventeen problems based on a set of carefully chosen data and label attributes. Such a problem-oriented taxonomy has allowed us to examine how different transfer learning approaches tackle each problem and how well each problem has been researched to date. The comprehensive problem-oriented review of the advances in transfer learning with respect to the problem has not only revealed the challenges in transfer learning for visual recognition, but also the problems (e.g. eight of the seventeen problems) that have been scarcely studied. This survey not only presents an up-to-date technical review for researchers, but also a systematic approach and a reference for a machine learning practitioner to categorise a real problem and to look up for a possible solution accordingly

    Probabilistic models for mining imbalanced relational data

    Get PDF
    Most data mining and pattern recognition techniques are designed for learning from at data files with the assumption of equal populations per class. However, most real-world data are stored as rich relational databases that generally have imbalanced class distribution. For such domains, a rich relational technique is required to accurately model the different objects and relationships in the domain, which can not be easily represented as a set of simple attributes, and at the same time handle the imbalanced class problem.Motivated by the significance of mining imbalanced relational databases that represent the majority of real-world data, learning techniques for mining imbalanced relational domains are investigated. In this thesis, the employment of probabilistic models in mining relational databases is explored. In particular, the Probabilistic Relational Models (PRMs) that were proposed as an extension of the attribute-based Bayesian Networks. The effectiveness of PRMs in mining real-world databases was explored by learning PRMs from a real-world university relational database. A visual data mining tool is also proposed to aid the interpretation of the outcomes of the PRM learned models.Despite the effectiveness of PRMs in relational learning, the performance of PRMs as predictive models is significantly hindered by the imbalanced class problem. This is due to the fact that PRMs share the assumption common to other learning techniques of relatively balanced class distributions in the training data. Therefore, this thesis proposes a number of models utilizing the effectiveness of PRMs in relational learning and extending it for mining imbalanced relational domains.The first model introduced in this thesis examines the problem of mining imbalanced relational domains for a single two-class attribute. The model is proposed by enriching the PRM learning with the ensemble learning technique. The premise behind this model is that an ensemble of models would attain better performance than a single model, as misclassification committed by one of the models can be often correctly classified by others.Based on this approach, another model is introduced to address the problem of mining multiple imbalanced attributes, in which it is important to predict several attributes rather than a single one. In this model, the ensemble bagging sampling approach is exploited to attain a single model for mining several attributes. Finally, the thesis outlines the problem of imbalanced multi-class classification and introduces a generalized framework to handle this problem for both relational and non-relational domains
    • …
    corecore