1,326 research outputs found

    An Adaptivity Hierarchy Theorem for Property Testing

    Get PDF
    Adaptivity is known to play a crucial role in property testing. In particular, there exist properties for which there is an exponential gap between the power of adaptive testing algorithms, wherein each query may be determined by the answers received to prior queries, and their non-adaptive counterparts, in which all queries are independent of answers obtained from previous queries. In this work, we investigate the role of adaptivity in property testing at a finer level. We first quantify the degree of adaptivity of a testing algorithm by considering the number of "rounds of adaptivity" it uses. More accurately, we say that a tester is k-(round) adaptive if it makes queries in k+1 rounds, where the queries in the i\u27th round may depend on the answers obtained in the previous i-1 rounds. Then, we ask the following question: Does the power of testing algorithms smoothly grow with the number of rounds of adaptivity? We provide a positive answer to the foregoing question by proving an adaptivity hierarchy theorem for property testing. Specifically, our main result shows that for every n in N and 0 <= k <= n^{0.99} there exists a property Pi_{n,k} of functions for which (1) there exists a k-adaptive tester for Pi_{n,k} with query complexity tilde O(k), yet (2) any (k-1)-adaptive tester for Pi_{n,k} must make Omega(n) queries. In addition, we show that such a qualitative adaptivity hierarchy can be witnessed for testing natural properties of graphs

    An adaptivity hierarchy theorem for property testing

    Get PDF
    Adaptivity is known to play a crucial role in property testing. In particular, there exist properties for which there is an exponential gap between the power of adaptive testing algorithms, wherein each query may be determined by the answers received to prior queries, and their non-adaptive counterparts, in which all queries are independent of answers obtained from previous queries. In this work, we investigate the role of adaptivity in property testing at a finer level. We first quantify the degree of adaptivity of a testing algorithm by considering the number of "rounds of adaptivity" it uses. More accurately, we say that a tester is k-(round) adaptive if it makes queries in k+1 rounds, where the queries in the i'th round may depend on the answers obtained in the previous i-1 rounds. Then, we ask the following question: Does the power of testing algorithms smoothly grow with the number of rounds of adaptivity? We provide a positive answer to the foregoing question by proving an adaptivity hierarchy theorem for property testing. Specifically, our main result shows that for every n in N and 0 <= k <= n^{0.99} there exists a property Pi_{n,k} of functions for which (1) there exists a k-adaptive tester for Pi_{n,k} with query complexity tilde O(k), yet (2) any (k-1)-adaptive tester for Pi_{n,k} must make Omega(n) queries. In addition, we show that such a qualitative adaptivity hierarchy can be witnessed for testing natural properties of graphs

    An adaptivity hierarchy theorem for property testing

    Get PDF
    Adaptivity is known to play a crucial role in property testing. In particular, there exist properties for which there is an exponential gap between the power of adaptive testing algorithms, wherein each query may be determined by the answers received to prior queries, and their non-adaptive counterparts, in which all queries are independent of answers obtained from previous queries. In this work, we investigate the role of adaptivity in property testing at a finer level. We first quantify the degree of adaptivity of a testing algorithm by considering the number of "rounds of adaptivity" it uses. More accurately, we say that a tester is k-(round) adaptive if it makes queries in k+1 rounds, where the queries in the i'th round may depend on the answers obtained in the previous i-1 rounds. Then, we ask the following question: Does the power of testing algorithms smoothly grow with the number of rounds of adaptivity? We provide a positive answer to the foregoing question by proving an adaptivity hierarchy theorem for property testing. Specifically, our main result shows that for every n in N and 0 <= k <= n^{0.99} there exists a property Pi_{n,k} of functions for which (1) there exists a k-adaptive tester for Pi_{n,k} with query complexity tilde O(k), yet (2) any (k-1)-adaptive tester for Pi_{n,k} must make Omega(n) queries. In addition, we show that such a qualitative adaptivity hierarchy can be witnessed for testing natural properties of graphs

    Refining the Adaptivity Notion in the Huge Object Model

    Full text link
    The Huge Object model for distribution testing, first defined by Goldreich and Ron in 2022, combines the features of classical string testing and distribution testing. In this model we are given access to independent samples from an unknown distribution PP over the set of strings {0,1}n\{0,1\}^n, but are only allowed to query a few bits from the samples. The distinction between adaptive and non-adaptive algorithms, which is natural in the realm of string testing (but is not relevant for classical distribution testing), plays a substantial role in the Huge Object model as well. In this work we show that in fact, the full picture in the Huge Object model is much richer than just that of the ``adaptive vs. non-adaptive'' dichotomy. We define and investigate several models of adaptivity that lie between the fully-adaptive and the completely non-adaptive extremes. These models are naturally grounded by viewing the querying process from each sample independently, and considering the ``algorithmic flow'' between them. For example, if we allow no information at all to cross over between samples (up to the final decision), then we obtain the locally bounded adaptive model, arguably the ``least adaptive'' one apart from being completely non-adaptive. A slightly stronger model allows only a ``one-way'' information flow. Even stronger (but still far from being fully adaptive) models follow by taking inspiration from the setting of streaming algorithms. To show that we indeed have a hierarchy, we prove a chain of exponential separations encompassing most of the models that we define
    • …
    corecore