111 research outputs found

    Learning a Dilated Residual Network for SAR Image Despeckling

    Full text link
    In this paper, to break the limit of the traditional linear models for synthetic aperture radar (SAR) image despeckling, we propose a novel deep learning approach by learning a non-linear end-to-end mapping between the noisy and clean SAR images with a dilated residual network (SAR-DRN). SAR-DRN is based on dilated convolutions, which can both enlarge the receptive field and maintain the filter size and layer depth with a lightweight structure. In addition, skip connections and residual learning strategy are added to the despeckling model to maintain the image details and reduce the vanishing gradient problem. Compared with the traditional despeckling methods, the proposed method shows superior performance over the state-of-the-art methods on both quantitative and visual assessments, especially for strong speckle noise.Comment: 18 pages, 13 figures, 7 table

    DoPAMINE: Double-sided Masked CNN for Pixel Adaptive Multiplicative Noise Despeckling

    Full text link
    We propose DoPAMINE, a new neural network based multiplicative noise despeckling algorithm. Our algorithm is inspired by Neural AIDE (N-AIDE), which is a recently proposed neural adaptive image denoiser. While the original N-AIDE was designed for the additive noise case, we show that the same framework, i.e., adaptively learning a network for pixel-wise affine denoisers by minimizing an unbiased estimate of MSE, can be applied to the multiplicative noise case as well. Moreover, we derive a double-sided masked CNN architecture which can control the variance of the activation values in each layer and converge fast to high denoising performance during supervised training. In the experimental results, we show our DoPAMINE possesses high adaptivity via fine-tuning the network parameters based on the given noisy image and achieves significantly better despeckling results compared to SAR-DRN, a state-of-the-art CNN-based algorithm.Comment: AAAI 2019 Camera Ready Versio

    Adaptive Total Variation Regularization Based SAR Image Despeckling and Despeckling Evaluation Index

    No full text

    A Tutorial on Speckle Reduction in Synthetic Aperture Radar Images

    Get PDF
    Speckle is a granular disturbance, usually modeled as a multiplicative noise, that affects synthetic aperture radar (SAR) images, as well as all coherent images. Over the last three decades, several methods have been proposed for the reduction of speckle, or despeckling, in SAR images. Goal of this paper is making a comprehensive review of despeckling methods since their birth, over thirty years ago, highlighting trends and changing approaches over years. The concept of fully developed speckle is explained. Drawbacks of homomorphic filtering are pointed out. Assets of multiresolution despeckling, as opposite to spatial-domain despeckling, are highlighted. Also advantages of undecimated, or stationary, wavelet transforms over decimated ones are discussed. Bayesian estimators and probability density function (pdf) models in both spatial and multiresolution domains are reviewed. Scale-space varying pdf models, as opposite to scale varying models, are promoted. Promising methods following non-Bayesian approaches, like nonlocal (NL) filtering and total variation (TV) regularization, are reviewed and compared to spatial- and wavelet-domain Bayesian filters. Both established and new trends for assessment of despeckling are presented. A few experiments on simulated data and real COSMO-SkyMed SAR images highlight, on one side the costperformance tradeoff of the different methods, on the other side the effectiveness of solutions purposely designed for SAR heterogeneity and not fully developed speckle. Eventually, upcoming methods based on new concepts of signal processing, like compressive sensing, are foreseen as a new generation of despeckling, after spatial-domain and multiresolution-domain method

    Guided patch-wise nonlocal SAR despeckling

    Full text link
    We propose a new method for SAR image despeckling which leverages information drawn from co-registered optical imagery. Filtering is performed by plain patch-wise nonlocal means, operating exclusively on SAR data. However, the filtering weights are computed by taking into account also the optical guide, which is much cleaner than the SAR data, and hence more discriminative. To avoid injecting optical-domain information into the filtered image, a SAR-domain statistical test is preliminarily performed to reject right away any risky predictor. Experiments on two SAR-optical datasets prove the proposed method to suppress very effectively the speckle, preserving structural details, and without introducing visible filtering artifacts. Overall, the proposed method compares favourably with all state-of-the-art despeckling filters, and also with our own previous optical-guided filter

    On Solving SAR Imaging Inverse Problems Using Non-Convex Regularization with a Cauchy-based Penalty

    Full text link
    Synthetic aperture radar (SAR) imagery can provide useful information in a multitude of applications, including climate change, environmental monitoring, meteorology, high dimensional mapping, ship monitoring, or planetary exploration. In this paper, we investigate solutions to a number of inverse problems encountered in SAR imaging. We propose a convex proximal splitting method for the optimization of a cost function that includes a non-convex Cauchy-based penalty. The convergence of the overall cost function optimization is ensured through careful selection of model parameters within a forward-backward (FB) algorithm. The performance of the proposed penalty function is evaluated by solving three standard SAR imaging inverse problems, including super-resolution, image formation, and despeckling, as well as ship wake detection for maritime applications. The proposed method is compared to several methods employing classical penalty functions such as total variation (TVTV) and L1L_1 norms, and to the generalized minimax-concave (GMC) penalty. We show that the proposed Cauchy-based penalty function leads to better image reconstruction results when compared to the reference penalty functions for all SAR imaging inverse problems in this paper.Comment: 18 pages, 7 figure

    ๋น„๊ฐ€์šฐ์‹œ์•ˆ ์žก์Œ ์˜์ƒ ๋ณต์›์„ ์œ„ํ•œ ๊ทธ๋ฃน ํฌ์†Œ ํ‘œํ˜„

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ)--์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :์ž์—ฐ๊ณผํ•™๋Œ€ํ•™ ์ˆ˜๋ฆฌ๊ณผํ•™๋ถ€,2020. 2. ๊ฐ•๋ช…์ฃผ.For the image restoration problem, recent variational approaches exploiting nonlocal information of an image have demonstrated significant improvements compared with traditional methods utilizing local features. Hence, we propose two variational models based on the sparse representation of image groups, to recover images with non-Gaussian noise. The proposed models are designed to restore image with Cauchy noise and speckle noise, respectively. To achieve efficient and stable performance, an alternating optimization scheme with a novel initialization technique is used. Experimental results suggest that the proposed methods outperform other methods in terms of both visual perception and numerical indexes.์˜์ƒ ๋ณต์› ๋ฌธ์ œ์—์„œ, ์˜์ƒ์˜ ๋น„๊ตญ์ง€์ ์ธ ์ •๋ณด๋ฅผ ํ™œ์šฉํ•˜๋Š” ์ตœ๊ทผ์˜ ๋‹ค์–‘ํ•œ ์ ‘๊ทผ ๋ฐฉ์‹์€ ๊ตญ์ง€์ ์ธ ํŠน์„ฑ์„ ํ™œ์šฉํ•˜๋Š” ๊ธฐ์กด ๋ฐฉ๋ฒ•๊ณผ ๋น„๊ตํ•˜์—ฌ ํฌ๊ฒŒ ๊ฐœ์„ ๋˜์—ˆ๋‹ค. ๋”ฐ๋ผ์„œ, ์šฐ๋ฆฌ๋Š” ๋น„๊ฐ€์šฐ์‹œ์•ˆ ์žก์Œ ์˜์ƒ์„ ๋ณต์›ํ•˜๊ธฐ ์œ„ํ•ด ์˜์ƒ ๊ทธ๋ฃน ํฌ์†Œ ํ‘œํ˜„์— ๊ธฐ๋ฐ˜ํ•œ ๋‘ ๊ฐ€์ง€ ๋ณ€๋ถ„๋ฒ•์  ๋ชจ๋ธ์„ ์ œ์•ˆํ•œ๋‹ค. ์ œ์•ˆ๋œ ๋ชจ๋ธ์€ ๊ฐ๊ฐ ์ฝ”์‹œ ์žก์Œ๊ณผ ์ŠคํŽ™ํด ์žก์Œ ์˜์ƒ์„ ๋ณต์›ํ•˜๋„๋ก ์„ค๊ณ„๋˜์—ˆ๋‹ค. ํšจ์œจ์ ์ด๊ณ  ์•ˆ์ •์ ์ธ ์„ฑ๋Šฅ์„ ๋‹ฌ์„ฑํ•˜๊ธฐ ์œ„ํ•ด, ๊ต๋Œ€ ๋ฐฉํ–ฅ ์Šน์ˆ˜๋ฒ•๊ณผ ์ƒˆ๋กœ์šด ์ดˆ๊ธฐํ™” ๊ธฐ์ˆ ์ด ์‚ฌ์šฉ๋œ๋‹ค. ์‹คํ—˜ ๊ฒฐ๊ณผ๋Š” ์ œ์•ˆ๋œ ๋ฐฉ๋ฒ•์ด ์‹œ๊ฐ์ ์ธ ์ธ์‹๊ณผ ์ˆ˜์น˜์ ์ธ ์ง€ํ‘œ ๋ชจ๋‘์—์„œ ๋‹ค๋ฅธ ๋ฐฉ๋ฒ•๋ณด๋‹ค ์šฐ์ˆ˜ํ•จ์„ ๋‚˜ํƒ€๋‚ธ๋‹ค.1 Introduction 1 2 Preliminaries 5 2.1 Cauchy Noise 5 2.1.1 Introduction 6 2.1.2 Literature Review 7 2.2 Speckle Noise 9 2.2.1 Introduction 10 2.2.2 Literature Review 13 2.3 GSR 15 2.3.1 Group Construction 15 2.3.2 GSR Modeling 16 2.4 ADMM 17 3 Proposed Models 19 3.1 Proposed Model 1: GSRC 19 3.1.1 GSRC Modeling via MAP Estimator 20 3.1.2 Patch Distance for Cauchy Noise 22 3.1.3 The ADMM Algorithm for Solving (3.7) 22 3.1.4 Numerical Experiments 28 3.1.5 Discussion 45 3.2 Proposed Model 2: GSRS 48 3.2.1 GSRS Modeling via MAP Estimator 50 3.2.2 Patch Distance for Speckle Noise 52 3.2.3 The ADMM Algorithm for Solving (3.42) 53 3.2.4 Numerical Experiments 56 3.2.5 Discussion 69 4 Conclusion 74 Abstract (in Korean) 84Docto
    • โ€ฆ
    corecore