6 research outputs found

    Imaging the Creative Unconscious:Reflexive Neural Responses to Objects in the Visual and Parahippocampal Region Predicts State and Trait Creativity

    Get PDF
    Abstract What does it take to have a creative mind? Theories of creative cognition assert that the quantity of automatic associations places fundamental constraints on the probability of reaching creative solutions. Due to the difficulties inherent in isolating automated associative responses from cognitive control, the neural basis underlying this faculty remains unknown. Here we acquired fMRI data in an incidental-viewing paradigm in which subjects performed an attention-demanding task whilst viewing task-irrelevant objects. By assigning a standard creativity task on the same objects out of the scanner, as well as a battery of psychometric creativity tests, we could assess whether stimulus-bound neural activity was predictive of state or trait variability in creativity. We found that stimulus-bound responses in superior occipital regions were linearly predictive of trial-by-trial variability in creative performance (state-creativity), and that in more creative individuals (trait-creativity) this response was more strongly expressed in entorhinal cortex. Additionally, the mean response to the onset of objects in parahippocampal gyrus was predictive of trait differences in creativity. This work suggests that, creative individuals are endowed with occipital and medial temporal reflexes that generate a greater fluency in associative representations, making them more accessible for ideation even when no ideation is explicitly called for

    PSYCHOACOUSTICS: a comprehensive MATLAB toolbox for auditory testing

    Get PDF
    PSYCHOACOUSTICS is a new MATLAB toolbox which implements three classic adaptive procedures for auditory threshold estimation. The first includes those of the Staircase family (method of limits, simple up-down and transformed up-down); the second is the Parameter Estimation by Sequential Testing (PEST); and the third is the Maximum Likelihood Procedure (MLP). The toolbox comes with more than twenty built-in experiments each provided with the recommended (default) parameters. However, if desired, these parameters can be modified through an intuitive and user friendly graphical interface and stored for future use (no programming skills are required). Finally, PSYCHOACOUSTICS is very flexible as it comes with several signal generators and can be easily extended for any experiment

    Automaticity in the Recognition of Nonverbal Emotional Vocalizations

    Get PDF
    The ability to perceive the emotions of others is crucial for everyday social interactions. Important aspects of visual socioemotional processing, such as the recognition of facial expressions, are known to depend on largely automatic mechanisms. However, whether and how properties of automaticity extend to the auditory domain remains poorly understood. Here we ask if nonverbal auditory emotion recognition is a controlled deliberate or an automatic efficient process, using vocalizations such as laughter, crying, and screams. In a between-subjects design (N = 112), and covering eight emotions (four positive), we determined whether emotion recognition accuracy (a) is improved when participants actively deliberate about their responses (compared with when they respond as fast as possible) and (b) is impaired when they respond under low and high levels of cognitive load (concurrent task involving memorizing sequences of six or eight digits, respectively). Response latencies were also measured. Mixed-effects models revealed that recognition accuracy was high across emotions, and only minimally affected by deliberation and cognitive load; the benefits of deliberation and costs of cognitive load were significant mostly for positive emotions, notably amusement/laughter, and smaller or absent for negative ones; response latencies did not suffer under low or high cognitive load; and high recognition accuracy (approximately 90%) could be reached within 500 ms after the stimulus onset, with performance exceeding chance-level already between 300 and 360 ms. These findings indicate that key features of automaticity, namely fast and efficient/effortless processing, might be a modality-independent component of emotion recognition

    Visual rehabilitation and reorganization: case studies of cortical plasticity in patients with age-related macular degeneration

    Get PDF
    The extent to which cortical maps may reorganize in adult humans is a significant and topical debate in visual neuroscience. Though there are conflicting findings, evidence from humans and animals indicates that the topography of the visual cortex may change after retinal deafferentation. Remarkably, this reorganization seems to be possible in adults, whose brains are less amenable to plastic change. If adult visual reorganization is legitimate, an understanding of its causes and consequences could be profound considering the millions suffering from age-related visual disorders. This dissertation explores whether visual training may yield a reorganization of sensory maps in the adult visual cortex. It describes research in which patients, diagnosed with age-related macular degeneration (AMD), underwent visual rehabilitation therapy. Functional brain scans and behavioral tests were conducted pre and post training. These interventions generated valuable knowledge regarding whether "reorganized" activity is a true rewiring of feed forward cortical processes or an artifact of attentional feedback. The rehabilitation training produced demonstrable differences in activation patterns along the primary visual cortex (V1), but sparse improvement in the behavioral tests. In contrast, there was significant improvement in fixation tests which assessed oculomotor control. These results suggest that the nature of reorganized activity has more to do with attentional mechanisms than feed forward reorganization. Future investigations could benefit from examining the brain sites that govern visual attention in the frontal and parietal cortices. These areas may have more to do with visual adaptation in AMD patients than V1.Ph.D.Committee Chair: Eric Schumacher; Committee Member: Audrey Duarte; Committee Member: Paul Corballis; Committee Member: Paul Verhaeghen; Committee Member: Susan Prim
    corecore