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Abstract

The ability to perceive the emotions of others is crucial for everyday social interactions. Important 

aspects of visual socio-emotional processing, such as the recognition of facial expressions, are 

known to depend on largely automatic mechanisms. However, whether and how properties of 

automaticity extend to the auditory domain remains poorly understood. Here we ask if nonverbal 

auditory emotion recognition is a controlled deliberate or an automatic efficient process, using 

vocalizations such as laughter, crying, and screams. In a between-subjects design (N = 112), and 

covering eight emotions (four positive), we determined whether emotion recognition accuracy (1) 

is improved when participants actively deliberate about their responses (compared to when they 

respond as fast as possible), and (2) whether it is impaired when they respond under low and high 

levels of cognitive load (concurrent task involving memorizing sequences of six or eight digits, 

respectively). Response latencies were also measured. Mixed-effects models revealed that: 

recognition accuracy was high across emotions, and only minimally affected by deliberation and 

cognitive load; the benefits of deliberation and costs of cognitive load were significant mostly for 

positive emotions, notably amusement/laughter, and smaller or absent for negative ones; response 

latencies did not suffer under low or high cognitive load; and high recognition accuracy 

(approximately 90%) could be reached within 500 ms after the stimulus onset, with performance 

exceeding chance-level already between 300-360 ms. These findings indicate that key features of 

automaticity, namely fast and efficient/effortless processing, might be a modality-independent 

component of emotion recognition.
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Introduction

The human voice is a primary tool for emotional communication. Similarly to facial 

expressions or body postures, nonverbal vocalizations such as laughter, crying or sighs, 

provide a window into the intentions and emotions of others. Nonverbal vocalizations are 

distinct from emotional speech regarding their underlying production and perceptual 

mechanisms (Pell et al., 2015; Scott, Sauter, & McGettigan, 2010), and they reflect a 

primitive and universal form of communication, which can be compared to the use of voice 

by other species (Gruber & Grandjean, 2017; Juslin & Laukka, 2003; Sauter, Eisner, Ekman, 

& Scott, 2010; Scherer, 1995). Forced-choice classification studies indicate that listeners can 

recognize a wide range of emotions in vocalizations, even when they are heard in isolation 

and without contextual information (e.g., Belin, Fillion-Bilodeau, & Gosselin, 2008; Lima, 

Castro, & Scott, 2013; Sauter, Eisner, Calder, & Scott, 2010; Schröder, 2003; Simon-

Thomas, Keltner, Sauter, Sinicropi-Yao, & Abramson, 2009). This includes the recognition 

of negative emotions, such as anger, fear, or disgust, as well as of positive ones, such as 

amusement, achievement, or pleasure (Sauter & Scott, 2007) and seldom-studied states like 

awe, compassion, or enthusiasm (Simon-Thomas et al., 2009). Vocalizations are typically 

recognized with high accuracy, often above 70-80% correct on average (e.g., 68% in Belin et 

al., 2008; 86% in Lima et al., 2013; 70% in Sauter Eisner, Calder, et al., 2010; 81% in 

Schröder, 2003), and listeners’ responses can be predicted from the low-level acoustic 

attributes of the stimuli, including their temporal features, amplitude, pitch, and spectral 

profile (Lima et al., 2013; Sauter, Eisner, Calder, et al., 2010). Perceiving vocal cues and 

evaluating their emotional meaning involves several brain systems, including the superior 

temporal gyri, motor and premotor cortices, and prefrontal systems, namely the inferior 

frontal gyrus, along with subcortical regions such as the amygdala (e.g., Banissy et al., 2010; 

Bestelmeyer, Maurage, Rouger, Latinus, & Belin, 2014; Lima et al., 2015; Scott et al., 1997; 

Warren et al., 2006). Three- to seven-month-old infants already show specialized brain 

responses to crying vocalizations in regions involved in affective processing (Blasi et al., 

2011), children as young as 5-7 years are proficient at recognizing a range of positive and 

negative vocal emotions (Sauter, Panattoni, & Happé, 2013), and emotion recognition 

accuracy remains high across the adult life span (Lima, Alves, Scott, & Castro, 2014).

Although this provides compelling evidence that humans are tuned to decode emotional 

information in vocalizations, far less is known about the cognitive processes underlying this 

socio-emotional skill. Specifically, it remains unclear whether vocal emotion recognition 

depends on controlled deliberate processes or on processes that are relatively automatic. One 

possibility is that, when evaluating the emotional meaning of a vocal expression, listeners 

engage in controlled processes to consider different alternatives, based on which they 

formulate an effortful judgment about the expression. In line with this hypothesis, for the 

processing of emotional speech and facial expressions, several studies have reported 

associations between emotion recognition performance and executive and attentional 

abilities, both in healthy (Borod et al., 2000) and clinical groups (Breitenstein, Van Lancker, 

Daum, & Waters, 2001; Hoaken, Allaby, & Earle, 2007; Lima, Garrett, & Castro, 2013). It 

has also been found that attention significantly modulates brain responses to vocal emotional 

information (Bach et al., 2008; Sander et al., 2005). Additionally, in everyday social 
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interactions, vocalizations are typically embedded in rich contexts, where their meaning 

depends, for instance, on emotional cues from other modalities (e.g., facial expressions), on 

verbal information, or on whether they are produced in a volitional or a spontaneous way 

(Anikin & Lima, 2017; Scott, Lavan, Chen, & McGettigan, 2014). A significant degree of 

flexible situated processing could therefore be routinely required.

Alternatively, vocal emotion recognition could proceed in a largely automatic manner. The 

idea that important aspects of socio-emotional processing are highly automatic has a long 

history (e.g., Bargh, 1994; Ekman, 1977; Öhman, 1986; Öhman, Flykt, & Esteves, 2001), 

and it is often tied to accounts of emotion and cognitive processes as evolutionary 

adaptations (e.g., Bargh et al., 2012; Öhman, 1986; Tracy & Robbins, 2008). Most research 

on this topic has been conducted in the visual domain and on preconscious automaticity, 

focusing on how some processes operate outside of awareness, in an unintentional and 

uncontrollable fashion. For instance, fear-relevant pictures (e.g., snakes) are detected faster 

than fear-irrelevant ones (e.g., mushrooms) in visual search tasks, even if they are presented 

away from the spotlight of attention or in the context of a large number of distractors 

(Öhman et al., 2001), suggesting a preattentive detection of emotional stimuli. Subliminally 

presented facial expressions generate automatic facial mimicry (Dimberg, Thunberg, & 

Elmehed, 2000), elicit early event-related potentials (ERP) similarly to consciously 

perceived expressions (starting 140 ms after face onset; Kiss & Eimer, 2008), and can 

influence evaluations of subsequently presented stimuli (e.g., Winkielman, Berridge, & 

Wilbarger, 2005).

Critically, there are several forms and features of automaticity, and relevant to the current 

study is the observation that the conscious, explicit recognition of emotions in facial 

expressions can also show features of automatic processes, namely fast and efficient 

processing. Efficiency refers to the extent to which a process can be completed effortlessly, 

with minimal involvement of controlled cognitive resources. In other words, efficient 

processes can operate even when controlled resources are occupied with other tasks (for 

reviews on automaticity, Bargh, 1994; Bargh, Schwader, Hailey, Dyer, & Boothby, 2012; 

Moors & De Houwer, 2006; Tzelgov, 1997). Consistent with this, Tracy and Robins (2008) 

found that facial expressions could be accurately recognized, both under time constrains 

(within 600 ms) and in suboptimal attentional conditions, under cognitive load. That is, 

emotion recognition remained accurate when the controlled processes available for emotion 

recognition were limited by a concurrent mnemonic task that competed for central resources. 

This was observed for ‘basic’ emotions and for more complex ones, such as embarrassment, 

pride and shame. Additionally, encouraging participants to carefully deliberate about their 

response, as compared to when they responded as quickly as possible, benefited 

performance only slightly, and only for some emotions (4 out of 8 in Experiment 1, and 3 

out of 10 in Experiment 2), further suggesting that facial emotion recognition is supported 

by fast and efficient processes, that are relatively independent of deliberation. This also has 

implications for everyday social interactions, where facial expressions typically have to be 

recognized quickly and in conditions of considerable noise and distraction. However, 

whether these findings extend to modalities outside of vision remains unknown. ERP 

evidence indicates that emotional vocalizations are differentiated from neutral sounds within 

150 ms of exposure (Sauter & Eimer, 2010; see also Liu et al., 2012), and such 
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differentiation is observed even if detecting emotional sounds is irrelevant to the task 

(Pinheiro, Barros, & Pedrosa, 2015). This suggests an early automatic processing of 

emotional salience, but no studies have examined automaticity in the conscious access to the 

emotional meaning of vocalizations.

In the current study, we ask if, and to what degree, vocal emotion recognition proceeds 

efficiently (i.e., with minimal effort) or under controlled deliberate processing. Participants 

judged whether or not vocalizations expressed a given emotion category (yes/no decision) 

under one of four conditions, in a between-subjects design. In the deliberated condition, they 

were instructed to carefully deliberate about their response in order to be as accurate as 

possible, thus maximizing the engagement of controlled processing. In the fast condition, 

participants were instructed to respond as quickly as possible, following their first 

impressions. In two cognitive load conditions, participants were also instructed to respond as 

quickly as possible, and had to simultaneously perform a memory task, thus minimizing the 

amount of controlled cognitive resources available. The memory task consisted of rehearsing 

sequences of six (low load condition) or eight (high load condition) digits, which 

participants had to hold in memory for later recall. Similar cognitive load manipulations 

have been effectively used in previous studies on automaticity of emotion recognition and 

social judgments (e.g., Aviezer, Dudarev, Bentin, & Hassin, 2011; Bargh & Tota, 1988; 

Gilbert & Osborne, 1989; Tracy & Robbins, 2008), and more broadly in cognitive research 

involving dual-task paradigms (e.g., Karatekin, 2004; Ransdell, Arecco, & Levy, 2001). We 

hypothesized that, if vocal emotion recognition depends on controlled deliberate processes 

to an important extent, (1) careful deliberation should be associated with significantly higher 

recognition accuracy, as compared to when participants respond fast or under load; and (2) 

there should be a relationship between the level of cognitive load and recognition accuracy. 

The higher the load, the lower the emotion recognition performance. On the other hand, if 

vocal emotion recognition is an efficient process, recognition accuracy should be relatively 

stable over different levels of cognitive load, i.e., it should remain high when controlled 

resources are limited. It should also be independent of careful deliberation.

Two other questions are addressed. First, we included a wide range of positive (achievement, 

amusement, pleasure, relief) and negative emotions (anger, disgust, fear, and sadness) to 

explore if the putative role of controlled processes varies across categories, and if it relates to 

broader affective dimensions, namely arousal and valence. High arousal is associated with a 

larger early differentiation between emotional and neutral vocalizations (Sauter & Eimer, 

2009), and distinct brain systems are engaged depending on the arousal and valence 

properties of vocalizations (Warren et al., 2006). Regarding valence, positive vocalizations 

could involve relatively more controlled and flexible processing than negative ones, 

considering evidence that they might be more dependent on learning and context: as 

compared to negative vocalizations, positive ones seem to vary more across cultures (Sauter, 

Eisner, Ekman, et al., 2010), do not elicit selective brain responses as early in development 

(Blasi et al., 2011), evidence for their rapid detection in the adult brain is less consistent (Liu 

et al., 2012; Sauter & Eimer, 2010), and data from infants suggest that they are modulated 

by learning during development (Soderstrom, Reimchen, Sauter, & Morgan, 2017).
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Second, we measured latencies in addition to response accuracy, to ask if cognitive load 

produces slower responses, as it could be predicted if controlled processing played a 

preponderant role during emotion recognition. Crucially, we examine the relationship 

between latencies and accuracy when participants were instructed to respond as quickly as 

possible, to estimate how quickly participants can reach accuracy levels above chance, i.e. 

how fast vocal emotion recognition can be. For emotional speech, evidence from gating 

experiments indicates that listeners can recognize emotions rapidly, with performance 

reaching high accuracy levels after hearing approximately 400-800 ms of an utterance (Jian, 

Paulmann, Robin, & Pell, 2015; Rigoulot, Wassiliwizky, & Pell, 2013), but for nonverbal 

vocalizations this question remains unanswered. Finally, as control measures, we examined 

participants’ auditory perceptual abilities and collected information about their musical 

training, to ensure that any potential effects of controlled processing could not be attributed 

to these confounds. Both auditory perceptual abilities and musical training predict vocal 

emotion recognition in the context of emotional speech (Globerson, Amir, Golan, Kishon-

Rabin, & Lavidor, 2013; Lima & Castro, 2011).

Method

Participants

One hundred and twelve undergraduate students from the University of Porto took part in the 

study for course credit or payment (Mage = 20.8 years; SD = 2.6; 95 female). They were 

randomly allocated to one of four conditions, in a between-subjects design: (1) deliberated; 

(2) fast; (3) low load; and (4) high load (n = 28 in each condition). Participants had normal 

or corrected-to-normal visual acuity, normal hearing, and were tested in individual sessions 

lasting around 45 minutes. Thirty-nine participants reported having had formal musical 

training, including instrumental practice (M = 5.7 years of training; SD = 4.7). The number 

of trained and untrained participants (χ2 = 2.95, df = 3, p = .40) and the number of years of 

training (F[3,108] = 0.72, p = .54) were similar across conditions.

Informed consent was obtained from all participants, and the study was performed in 

accordance with the relevant guidelines and regulations.

Stimuli

The experimental stimulus set consisted of 80 brief purely nonverbal vocalizations (e.g., 

laughs, screams, sobs, sighs; emblems such as ‘yuck’ were not included). They were taken 

from validated corpora used in previous studies (Lima et al., 2014; Lima et al., 2013; Sauter, 

Eisner, Calder, et al., 2010; Sauter & Scott, 2007) and expressed eight emotions, four 

positive and four negative ones (10 tokens per emotion): achievement, amusement, pleasure, 

relief, anger, disgust, fear, and sadness. Eight speakers, four women and four men (aged 27 

to 43 years), generated these vocalizations. The validation procedures showed that all 

vocalizations are recognized with high accuracy, and that their acoustic features provide 

sufficient information to permit automatic emotion classification and to predict listeners’ 

emotion responses. The final set of expressions used here was selected based on a pilot study 

(N = 40, 20 provided categorization accuracy data and 20 provided intensity, arousal and 

valence data; none of these participants took part in the main study). We ensured that (1) all 
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emotion categories were matched for duration (F[7,72] = 0.87, p = .54), categorization 

accuracy (likelihood-ratio test, L = 11.9, df = 1, p = .10), and perceived intensity (L = 8.4, df 
= 7, p = .30); and that (2) positive and negative emotions were similar in duration (F[1,78] = 

0.12, p = .73), intensity (L = 0.00, df = 1, p = 1), arousal (L = 0.0002, df = 1, p = .99), and 

categorization accuracy (L = 0.03, df = 1, p = .85). The characteristics of the stimuli are 

summarized in Table 1.

Design and Procedure

In all the four conditions, participants completed 16 blocks of 12 trials each (total 192 trials). 

Each block was assigned a target emotion (there were two blocks per emotion), and 

participants performed a yes/no decision, indicating whether each of the 12 vocalizations of 

that block expressed the target emotion or not (e.g., amusement in the amusement block). 

Five vocalizations in each block expressed the target emotion (experimental trials), and 

seven did not (filler trials); these non-target expressions included one example of each of the 

remaining seven emotions. The vocalizations used for the filler trials were selected from the 

same corpora as the experimental expressions, expressed the same emotion categories, were 

generated by the same speakers, and consisted of 112 stimuli (14 per emotion). There was 

no overlap between the experimental and filler stimulus sets (total number of unique 

vocalizations = 192), and none of the vocalizations was presented more than once 

throughout the experiment.

The order of the vocalizations was randomized within each block, and the order of the 

blocks was pseudo-randomized, ensuring that the two blocks of the same emotion were not 

presented consecutively. The vocalizations were played through headphones, and no 

feedback was given concerning response accuracy. A short familiarization phase preceded 

the task, and participants were informed about all the emotions that they would be asked to 

recognize (the emotion labels were introduced, alongside illustrative real-life scenarios for 

each emotion; for details, see Lima et al., 2013). Responses were collected via key presses 

(the order of the ‘yes’ and ‘no’ keys was counter-balanced across participants), and the 

stimuli were presented using SuperLab version 4.0 (Abboud, Schultz, & Zeitlin, 2006), 

running on an Apple MacBook Pro. Both response accuracy and latencies were collected. 

Latencies were measured from the onset of the vocalization until the key press.

In the deliberated condition, participants were instructed to respond as accurately as 

possible, and encouraged to take their time to think carefully before making a decision. In 

the fast condition, participants were instructed to make their decisions as quickly as possible, 

and encouraged to follow their first impressions in completing the task. In the two conditions 

with load, the instructions were the same as in the fast condition (i.e., participants made their 

decisions as quickly as possible), but participants were asked to perform a second task in 

addition to the emotion recognition one: before the beginning of each block, a sequence of 

digits was presented on the screen for 25 seconds, and participants were instructed to use 

that time to memorize it; they then completed the emotion recognition block, and were asked 

to recall the sequence of digits afterwards (for a similar procedure, Tracy & Robins, 2008). 

In the low load condition, the sequences to be memorized had 6 digits, and in the high load 
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condition they had 8 digits. Similarly to the emotion recognition task, no feedback was given 

concerning response accuracy.

Psychoacoustic Tasks

Participants’ frequency discrimination and processing speed thresholds were determined 

using a ‘two-down one-up’ adaptive staircase procedure (Hairston & Maldjian, 2009). In the 

frequency discrimination task, participants listened to two 300 ms steady pure tones in each 

trial, and indicated which one was the highest. One of the tones was always presented at the 

same frequency (1000 Hz) and the other one at a higher frequency, varying adaptively from 

1 to 200 Hz higher. The initial frequency difference was 100 Hz; correct responses led to 

progressively smaller differences until participants stopped responding correctly, and 

incorrect responses led to progressively larger differences, until participants responded 

correctly again. In the processing speed task, participants also indicated which of two tones 

in each trial was the highest, but what varied adaptively was the time difference between the 

onset of the first and of the second tones (stimulus onset asynchrony, SOA); correct 

responses led to progressively shorter SOAs, and incorrect responses led to longer SOAs 

(the higher tone was always presented at 660 Hz, and the lower one at 440 Hz; the initial 

SOA was 100 ms, and it varied between 1 ms and 150 ms). Both the frequency 

discrimination and the processing speed tasks ended after 14 reversals (i.e., changes in the 

direction of the stimulus difference), and thresholds were calculated using the arithmetic 

mean of the last 8 reversals. The initial step size was 10 Hz in the frequency discrimination 

task (10 ms in the processing speed task), it was divided by 2 after 4 reversals, and a final 

step size of 1 Hz (1 ms in the processing speed task) was reached after 8 reversals. This 

process converged on perceptual thresholds associated with a performance level of 70.7%.

Statistical Analysis

The effects of condition, emotion, and of other predictors on emotion recognition 

performance were examined in a series of logistic generalized linear mixed models (GLMM) 

for unaggregated data, with random intercepts per participant and per vocalization (separate 

analyses were conducted for hit rates and false alarms; significance was tested using 

likelihood ratio tests, L). These frequentist GLMMs were fit using the lme4 package (Bates, 

Maechler, Bolker, & Walker, 2015). They were complemented with Bayesian inference, 

which was used to contrast specific conditions and combinations of conditions, and to 

estimate the effects of valence and arousal on accuracy and on the contrasts between 

conditions. An advantage of employing Bayesian methodology is its flexible technique for 

controlling for multiple comparisons, namely shrinkage of regression coefficients 

(Kruschke, 2014). When simultaneously estimating a large number of coefficients (for 

example, 32 in a model with interaction between condition and emotion), we used shrinkage 

by imposing a horseshoe prior on all coefficients except the intercept (Carvalho, Polson, & 

Scott, 2009). All beta-coefficients in models with shrinkage are assumed to belong to the 

same distribution, the parameters of which are estimated from the data. This ensures that 

multiple comparisons between factor levels do not inflate the risk of false positives, helping 

to avoid type I errors.
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For other Bayesian analyses without shrinkage, we specified mildly informative conservative 

priors centered at zero, as this improves convergence of complex mixed models and guards 

against over fitting (McElreath, 2015). Posterior distributions were summarized by taking 

the median and 95% credible interval (CI) over individual steps in the Markov Chain Monte 

Carlo (MCMC). Unless strong priors are specified, Bayesian CIs are often numerically 

comparable to confidence intervals, but more intuitive to interpret (Morey, Hoekstra, Rouder, 

Lee, & Wagenmakers, 2016): they contain a certain proportion of the posterior probability. 

That is, given the model and the observed data, the most credible value of an estimated 

parameter is 95% likely to lie within its 95% CI. When contrasting two conditions (e.g. 

deliberated vs. three remaining conditions), the entire CI indicates the most credible values 

for the difference; if it does not include zero, this can be taken as evidence in favor of an 

actual difference between those conditions. All generative models were fit using the Stan 

computational framework (http://mc-stan.org/) and the brms package (Buerkner, 2017).

The effects of condition and emotion on the time participants took to correctly recognize the 

target expressions were also examined. Errors and outliers (latencies below 250 ms or 

exceeding the mean of each participant by 3 SD) were not included in this analysis. 

Latencies were approximately normally distributed after a log transformation, and Gaussian 

models were applied.

The time needed to perform the task with accuracy above chance level (50%), and to reach 

peak accuracy level, was estimated by examining the relationship between latencies of all 

responses (correct and incorrect) and overall emotion recognition accuracy (including hits 

and correct rejections of filler expressions) in the timed conditions (fast, low load and high 

load). This relation was nonlinear over the full range of response latencies and not 

satisfactorily captured by a logistic model with a polynomial term. To model this latency-

accuracy function, we therefore used smooth regression, namely generalized additive mixed 

models (GAMM; Wood, 2006). This model was fit using the brms package (Buerkner, 2017) 

with random intercepts per participant and per vocalization and a smoothing term for log 

transformed latencies. As above, mildly informative conservative priors were used.

All analyses were performed in R 3.2.2 (https://www.r-project.org). The code used for data 

analysis and the full data set are provided in Supplemental Materials.

Results

Vocalizations were recognized with high accuracy (M = 90.8% hits across conditions, i.e., 

correctly pressing ‘yes’ when the vocalization expressed the target emotion), well above the 

chance level (50%). Accuracy rates were high across conditions, even under the two levels 

of cognitive load: 94.6% in the deliberated condition, 89.8% in the fast condition, 91.4% in 

the low load condition, and 87.6% in the high load condition. These high rates cannot be 

explained by a bias to use the ‘yes’ key for any vocalization, as false alarms (i.e., incorrectly 

pressing ‘yes’ for filler vocalizations) were low (M = 6.7%), also across conditions: 5.4% in 

the deliberated condition, 8.2% in the fast condition, 5.4% in the low load condition, and 

7.7% in the high load condition. Thus, participants’ ability to recognize that a particular 

vocalization did not express the target emotion was also high. The median of posterior 
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distribution and 95% CI for hits and false alarms are depicted in Figure 1, separately for 

each condition and emotion.

Recognition of Target Emotions Across Conditions

Although accuracy rates were generally high, differences between conditions were 

significant (L = 16.7, df = 3, p < .001). The effect of emotion (L = 27.8, df = 7, p < .001) and 

the interaction between condition and emotion (L = 60.9, df = 21, p < .001) were also 

significant, indicating that deliberation and cognitive load affected accuracy differently 

across emotions (accuracy differences between conditions, i.e., the magnitude of the effects, 

are depicted in Figure 2, separately for each emotion). To follow up on these effects, we first 

focused on whether deliberation improved the recognition of target emotions. Hit rates were 

2.8%1 higher in the deliberated as compared to the fast condition (95% CI [0.8, 5.5]), and 

3.2% higher as compared to the average of the three other conditions (95% CI [1.6, 5.1]), 

indicating a significant, yet small, benefit of thinking carefully before responding 

(deliberated vs. low load conditions, +1.9%, 95% CI [0.1, 4.3]; deliberated vs. high load 

conditions, +4.7%, 95% CI [2.3, 8.1])2. Looking at specific emotions, the benefits of 

deliberation (vs. three other conditions) were 5.6% for amusement (95% CI [2.2, 11.0]) and 

1.6% for pleasure (95% CI [0.1, 4.0]). For the remaining emotions, the trend was in the same 

direction, but the 95% CI included zero, providing no clear evidence for a benefit (see 

Figure 2). When comparisons were conducted between the deliberated and each of the other 

conditions separately, benefits were found for amusement across comparisons (deliberated 

vs. fast conditions, marginal effect +0.9%, 95% CI [-0.2, 3.8]; deliberated vs. low load 

conditions, +6.7%, 95% CI [2.3, 14.4]; deliberated vs. high load conditions, +8.0%, 95% CI 

[2.8, 16.5]), and additionally for pleasure and relief in the deliberated vs. high load 

comparison (pleasure, +3.8%, 95% CI [0.7, 9.5]; relief, (+3.4%, 95% CI [0.3, 9.1]).

We then focused on the potential negative effects of cognitive load. Hit rates were generally 

similar in the fast condition as compared to the average of the two load conditions, 

suggesting that there was no general cost of recognizing the target expressions under divided 

attention (+0.6% in the fast condition, 95% CI [-2.0, 3.1]). The only exception was 

amusement, for which accuracy was 5.6% higher in the fast condition than in the load 

conditions (95% CI [1.3, 11.8]). When the two load conditions were directly compared, 

accuracy rates were only marginally higher (+2.8%) in the low vs. high load conditions 

(95% CI [-0.1, 6.3]). The benefits of low vs. high load were apparent for relief (+3.9%, 95% 

CI [0.9, 9.3]), pleasure (+3.8%, 95% CI [0.8, 9.8], and disgust (+2.6%, 95% CI [0.1, 6.9]), 

but for the remaining emotions the evidence for a benefit was less clear.

These findings provide evidence for positive effects of deliberation and negative effects of 

cognitive load in the recognition of vocal emotions, but small and limited to a reduced set of 

mostly positive emotions, particularly amusement. To test if the pattern remained unaltered 

when emotion recognition was more difficult, and thus potentially more dependent on 

1Here and elsewhere, reported difference scores are taken from the estimated models and not from the observed data, i.e., they reflect 
predicted (fit) values
2For completeness, we have also used a more standard frequentist approach to evaluate this and the remaining main comparisons of 
the current work (Wald tests or t-tests with Bonferroni correction for multiple comparisons). The general pattern of results was 
consistent with the Bayesian inferences, as detailed in Supplemental Materials.
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effortful processing, we replicated the analysis focusing on the vocalizations that were least 

well recognized in the main experiment (5 vocalizations for each emotion, 40 in total). 

Accuracy for this subset of 40 vocalizations was 85.8% on average (vs. 95.9% for the 

remaining 40 vocalizations; see details in Supplemental Materials), and the interaction 

between condition and emotion was again significant (L = 44.9, df = 21, p = .002). The 

benefits of deliberation were only slightly larger than in the analysis on the full set of 

vocalizations (+5.2% for deliberated vs. fast condition, 95% CI [1.5, 9.5]; +6.1% for 

deliberated vs. three remaining conditions, 95% CI [3.1, 9.5]), and, importantly, the 95% CI 

excluded 0 for amusement only (+10% in the deliberated condition, 95% CI [2.6, 18.8]). Hit 

rates were similar in the fast condition as compared to the average of the two load conditions 

(+1.4% in the fast condition, 95% CI [-3.0, 5.7]), except for amusement (+9.5% in the fast 

condition, 95% CI [0.9, 19.4]). Hit rates were also similar between the high and the low load 

conditions (+3.7% in the low load condition, 95% CI [-1.4, 9.1]). The benefits of low vs. 

high load were most evident for the same emotions as in the full analysis, though the effects 

were only seen at the trend level: relief (+4.5%, 95% CI [-0.2, 12.2]), pleasure (+4.1%, 95% 

CI [-0.7, 11.5], and disgust (+4.7%, 95% CI [-0.8, 13.1]). Thus, we found no evidence for 

stronger effects of condition, or for a different pattern of results, even when emotion 

recognition was more challenging.

Additionally, we also wanted to ensure that the pattern of emotion-specific results (i.e., 

effects of deliberation and cognitive load mostly for positive emotions) was not an artifact of 

other attributes of the stimuli such as ambiguity, emotional intensity and duration. Based on 

data from the pilot study, we computed categorization accuracy and perceived intensity for 

each stimulus and included these measures, along with stimulus duration, as covariates in 

the model for predicting accuracy in different testing conditions in the main experiment. As 

expected, higher categorization accuracy (L = 7.1, df = 1, p < .007) and higher intensity (L = 

20.1, df = 1, p < .001) at the pilot stage predicted higher recognition accuracy in the main 

experiment. In contrast, duration had no effect (L = 0.06, df = 1, p = .81). Crucially, adding 

pilot accuracy, intensity and duration as covariates did not change the pattern of emotion-

specific effects across conditions. As before, the benefit of deliberation (vs. three other 

conditions) was particularly clear for amusement (+5.3%, 95% CI [2.4, 9.4]) and pleasure 

(+2.1%, 95% CI [0.4, 5.0]), while for the other emotions the 95% CI included zero. The 

emotion-specific negative effects of cognitive load were also replicated: accuracy was 5.2% 

higher in the fast condition than in the load conditions (95% CI [1.4, 10.3]) for amusement 

(for the remaining emotions the 95% CI included zero); and the benefits of low vs. high load 

were apparent for relief (4.2%; 95% CI [1.1, 9.3]), pleasure (4.9%; 95% CI [1.2, 10.9], and 

disgust (3.2%; 95% CI [0.1, 7.9]), but for the remaining emotions the evidence for a benefit 

was less clear.

False Alarms Across Conditions

The effect of condition on false alarm rates was marginally significant (L = 7.9, df = 3, p = .

05), and the Condition x Emotion interaction was significant (L = 39.9, df = 21, p = .01; 

main effect of emotion, L = 3.4, df = 7, p = .84). Deliberation was associated with slightly 

fewer false alarms, both when compared with the fast condition (-1.5%; 95% CI [0.2, 3.1]) 

and when compared with the average of the three remaining conditions (-0.8%; 95% CI [0.0, 
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1.8]; see Figure 2b, ‘Overall’ metric; deliberated vs. low load conditions, 0.0%, 95% CI 

[-1.0, 0.9]; deliberated vs. high load conditions, -0.9%, 95% CI [-2.5, 0.1]). Looking at 

specific emotions, the benefits of deliberation (vs. three other conditions) were apparent for 

amusement (-1.3%; 95% CI [0.1, 3.3]), but not for the remaining emotions. When 

comparisons were conducted between the deliberated and each of the other conditions 

separately, no differences were apparent, apart from a benefit for amusement in the 

deliberated vs. high load comparison (-3.1%, 95% CI % [-7.3, -0.3]).

No evidence for general negative effects of cognitive load on false alarms was found; there 

was actually a tendency for lower false alarms in the two load conditions as compared to the 

fast condition (-0.9%; 95% CI [-2.5, 0.2]), with no difference between the low and high load 

conditions (-0.9% in the low load condition; 95% CI [-2.4, 0.2). Looking at specific 

emotions, only amusement was associated with fewer false alarms in the low load vs. high 

load conditions (-2.6%, 95% CI [-6.6, 0.0]).

Potential Roles of Valence and Arousal

We took arousal and valence ratings of the experimental vocalizations, i.e., perceived arousal 

and valence based on the pilot study, and examined how these dimensions modulated 

accuracy rates. No effect of arousal was found (main effect of arousal, L = 0.1, df = 1, p = .

74; interaction Arousal x Condition, L = 6.1, df = 3, p = .10). However, valence significantly 

predicted how participants recognized the target expressions: higher valence (i.e., more 

positive vocalizations) was associated with higher hit rates, primarily in the deliberated 

condition. In other words, positive vocalizations, more than negative ones, significantly 

benefited when participants were encouraged to take their time to think about their responses 

(interaction Valence x Condition, L = 21.4, df = 3, p < .001; main effect of valence, L = 3.0, 

df = 1, p = .09; see Table 2). Additionally, the magnitude of the benefits of deliberation was 

numerically larger for more positive vocalizations, i.e., there was a positive relationship 

between valence and the magnitude of accuracy differences between the deliberated and fast 

condition, and between the deliberated and the three remaining conditions. These 

associations are illustrated in Figure 3a. Recognition accuracy for sounds of the most 

positive valence was predicted to be 2.8% higher in the deliberated as compared to the fast 

condition (95% CI [1.2, 5.7]), while for sounds of the most negative valence the difference 

was only 1.6% and non-significant (95% CI [-2.3, 5.7]). The difference between the 

deliberated and the three remaining conditions was 4.1% (95% CI [2.3, 7.0]) for the most 

positive vocalizations, and only 1.0% (95% CI [-2.4, 4.0]) for the most negative ones. A 

similar relationship was found between higher valence and differences in accuracy between 

the low and high cognitive load conditions (Figure 3a). The costs of higher load were 3.4% 

for the most positive vocalizations (95% CI [0.4, 8.1]), as compared to 2.1% and non-

significant (95% CI [-1.7, 6.2]) for the most negative ones. Altogether, these findings 

suggest that the benefits of deliberation and the costs of cognitive load are relatively higher 

for more positive vocalizations.

Given that the effects of condition on hit rates were most apparent for amusement, we asked 

whether the modulatory effect of valence was solely driven by amusement vocalizations, or 

whether it was a more general effect. In an analysis excluding amusement vocalizations, the 
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interaction Valence x Condition remained significant (L = 12.2, df = 3, p = .01; main effect 

of valence L = 7.4, df = 1, p = .01): as can be seen in Table 2, even after excluding 

amusement vocalizations, valence was positively associated with hit rates primarily in the 

deliberated condition, and an additional positive association was also found in the low load 

condition. We also found that the numerical associations between valence and the magnitude 

of the benefits of deliberation (as well as the magnitude of the benefits of low vs. high load) 

remained similar after excluding amusement vocalizations (Figure 3b).

Latencies Across Conditions

On average, participants took 1332 ms to correctly recognize the target vocalizations in the 

deliberated condition, 969 ms in the fast condition, 975 ms in the low load condition, and 

979 ms in the high load condition. Figure 4 depicts response latencies for each condition and 

emotion. The main effects of condition (L = 53.1, df = 3, p < .001) and emotion (L = 40.6, df 
= 7, p < .001) were significant, as was the interaction between condition and emotion (L = 

60.5, df = 21, p < .001). As expected, latencies were higher in the deliberated as compared to 

the remaining conditions (+347 ms, 95% CI [252, 435]), confirming that participants did 

follow the instructions and took a longer time to think about their responses in this 

condition. As can be seen in Figure 4, the difference was significant for all emotions, and it 

varied between +212 ms for relief (95% CI [139, 303]) and +357 for sadness (95% CI [251, 

466]). More importantly, when looking at the potential negative effects of cognitive load on 

the time taken to respond, we found no differences between the fast condition and the 

average of the two load conditions (-1 ms in the fast condition, 95% CI [-74, 87]), and no 

differences between the low load and the high load conditions (-3 ms in the low load 

condition, 95% CI [-80, 81]). For both contrasts, when looking at specific emotions, the 95% 

CI included 0 in all cases. We thus found no evidence for a cost of cognitive load in terms of 

the time participants needed to recognize the target expressions.

How quickly can nonverbal vocalizations be recognized?

To estimate how quickly participants could determine whether or not vocalizations 

expressed the target emotions, we examined the effect of latencies on overall accuracy (i.e., 

correct detection of target expressions and correct rejection of filler ones). These analyses 

were focused on the fast, low load and high load conditions together, as they all encouraged 

participants to be quick, and are therefore suitable to ask questions about the minimum 

amount of time needed for accurate responses (a separate analysis was conducted on the 

deliberated condition for completeness). Figure 5a shows observed accuracy in these three 

conditions as a function of latencies. Although only 2.5% of responses were provided under 

~500 ms, thus increasing the margin of uncertainty within this range of latencies, accuracy 

rates significantly above 50% can already be seen between 300 and 360 ms (Figure 5a). 

Furthermore, performance reaches ~90% by ~500 ms and plateaus by ~600 ms. It is 

noteworthy that, when participants were encouraged to focus on being accurate and to take 

their time to respond (deliberated condition), no responses were faster than ~500 ms, as 

indicated by the separate analysis (Figure 5b). Additionally, the few responses provided 

between 500 and 600 ms were already highly accurate, further confirming that this time is 

sufficient to perform the task with high accuracy levels. Complementary analyses, separately 

for each emotion, showed that this time window is associated with high accuracy for all 

Lima et al. Page 12

Emotion. Author manuscript; available in PMC 2019 June 01.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



emotions. Both in the conditions that emphasized fast responses and in the deliberated 

condition, we see that beyond a certain amount of time accuracy starts to decline: after 

~1000 ms in the fast conditions, and after ~1500-2000 ms in the deliberated condition. This 

possibly reflects hesitation for vocalizations that might be more difficult to recognize, or a 

negative effect of taking more than a certain amount of time to ponder about responses.

Memory Task

Performance on the memory task (cognitive load conditions) was 9.6% (95% CI [7.8, 11.3]) 

higher in the low load (6 digits) condition (M = 91.0%, 95% CI [89.9, 92.0]) than in the high 

load (8 digits) condition (M = 81.4%, 95% CI [80.0, 82.7]). These percentages correspond to 

correctly recalling 5.5 digits on average (out of 6) in the low load conditions, and 6.5 (out of 

8) in the high load condition. This finding confirms that the high load condition was indeed 

significantly more demanding than the low load one.

There was no overall relationship between performance levels in the memory task and 

performance levels in the emotion recognition task (L = 2.1, df = 1, p = .15), suggesting that 

vocal emotion recognition was not directly compromised by the amount of cognitive 

resources devoted to the second task. This was found across the two cognitive load 

conditions (Memory Task x Condition interaction, L = 0.18, df = 1, p = .67).

Psychoacoustic Processing, Musical Training, and Emotion Recognition

Participants’ frequency discrimination thresholds were 65.2 Hz in the deliberated group, 

60.4 Hz in the fast group, 55.3 Hz in the low load group and 33.5 Hz in the high load group. 

Processing speed thresholds were 101 ms in the deliberated group, 90 ms in the fast group, 

98 ms in the low load group, and 72 ms in the high load group. For the two measures, there 

were no differences across groups, apart from an unexpected advantage of the high load 

group vs. deliberated group (frequency discrimination: main effect, F[3,107] = 3.5, p = .02; 

high load vs. deliberated groups, t = -2.9, p = .005; processing speed: F[3,107] = 2.7, p = .

02; high load vs. deliberated groups, t = -2.4, p = .02). No associations were found between 

psychoacoustic thresholds and the recognition of target emotional expressions, though 

(frequency discrimination, L = 2.6, df = 1, p = .11; interaction Frequency Discrimination x 

Condition, L = 1.3, df = 3, p = .72; processing speed, L = 1.8, df = 1, p = .18; interaction 

Processing Speed x Condition, L = 2.4, df = 3, p = .49). The recognition of target emotional 

expressions was also not influenced by musical training (L = 1.9, df = 1, p = .17). In 

contrast, psychoacoustic thresholds were strongly predicted by musical training: participants 

with more years of musical training had lower thresholds, indicating better psychoacoustic 

processing abilities (frequency discrimination, R2 = .27, F[1,109] = 41.1, p < .001; 

processing speed, R2 = .17, F[1,109] = 22.1, p < .001).

Discussion

The current study examined whether emotion recognition in nonverbal vocalizations is a 

controlled deliberate or an automatic effortless process. To that end, we determined the 

effects of deliberation and cognitive load on response accuracy and latencies, covering a 

wide range of positive and negative emotions. We present four novel findings. First, emotion 
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recognition accuracy was generally high, and relatively stable across conditions: both the 

benefits of deliberation and the costs of cognitive load were small, and only observed for a 

reduced subset of emotions. Second, the deliberation and cognitive load effects were mostly 

seen for positive emotions, notably amusement/laughter, and they relate to the valence 

properties of the vocalizations more generally. Third, higher levels of cognitive load were 

not associated with costs in the time taken to correctly recognize vocalizations. Fourth, 

analyses of latency-accuracy functions indicated that high recognition accuracy 

(approximately 90% correct) can be reached within 500 ms of exposure to the vocalizations, 

with performance exceeding chance level accuracy already between 300-360 ms of 

exposure. These findings are discussed in the next paragraphs.

Although many studies have addressed automaticity in socio-emotional processing, the 

emphasis has often been on visual stimuli and on preconscious mechanisms, such as how 

subliminally presented facial expressions elicit emotional responses and modulate cognitive 

processes in an unintentional and uncontrollable way (e.g., Dimberg et al., 2000; Kiss & 

Eimer, 2008; Winkielman et al., 2005). Less is known about the automatic components of 

auditory emotional processing, and particularly concerning conscious, goal-directed 

mechanisms. These are mechanisms that involve higher-order conscious processes, such as 

explicit evaluations of emotional expressions, but that can show important features of 

automaticity, namely efficiency, i.e., an ability to operate with minimal dependence on 

controlled resources (Bargh, 2012). Our findings that vocal emotion recognition accuracy 

remained high in dual task conditions, under cognitive load, and improved only minimally 

when participants carefully deliberated about their responses, extend to the auditory domain 

previous results on the recognition of facial expressions (Tracy & Robins, 2008). They 

indicate that, like facial expressions, vocalizations can be recognized and discriminated with 

a high degree of efficiency, even under different levels of attentional distraction. This has 

implications for understanding the cognitive mechanisms underlying vocal emotional 

processing, but also for everyday social interactions, which are rapidly changing and require 

the simultaneous processing of multiple sources of information, often under suboptimal 

conditions of distraction and noise. It is thus highly functional to be able to quickly and 

effortlessly evaluate the meaning of vocal expressions, while simultaneously performing 

other tasks (e.g., keep a conversation; process emotional cues from other modalities).

Interestingly, we also found that the effortless nature of vocal emotion recognition might 

extend to stimuli that are relatively more ambiguous, as indicated by the analysis of the 

subset of least well recognized vocalizations. This effortlessness is further reflected in the 

time participants took to respond. Emotions were categorized as quickly when controlled 

resources were taxed by a competing task, as when the task was performed under full 

attention, i.e., latencies did not suffer under cognitive load, both when the load was low and 

when it was high. Taken together, these findings add to previous ERP research in important 

ways (Liu et al., 2012; Pinheiro et al., 2015; Sauter & Eimer, 2010), demonstrating that the 

automaticity of emotion decoding in nonverbal vocalizations can be seen at different stages 

of processing: in the early (unintentional) neural differentiation of emotional sounds vs. 

neutral ones, and in the later high-order processes involving the conscious access to the 

specific emotional meaning of vocalizations. An important consideration is whether the high 

accuracy rates that we obtained, and the small effects of cognitive load and deliberation 
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observed, truly reflect the efficiency of the mechanism, or rather a task-related bias, i.e., a 

tendency to use the ‘yes’ key regardless of whether the vocalization expressed or not the 

target emotion. However, the analysis of false alarms speaks against this interpretation: they 

were generally low across conditions (under 9% on average), indicating that (1) participants 

used the ‘yes’ key mostly when the vocalizations indeed expressed the target emotion, and 

that (2) the ability to decide that a vocalization does not express a given emotion also 

involves efficient mechanisms. Consistent with this, there were no overall costs of cognitive 

load in terms of the percentage of false alarms, and the benefits of deliberation were 

negligible.

Not only were the effects of deliberation and cognitive load small, but we also found that 

they varied across vocal emotions. Converging evidence from emotion-specific analyses and 

from an analysis of the valence properties of the stimuli (perceived valence) suggests that 

positive vocalizations benefited relatively more than negative ones from controlled 

deliberate processing. This was particularly evident in the case of amusement/laughter, for 

which both benefits of deliberation and costs of cognitive load were consistently found. 

However, this effect appears to be more general, since it extended to other positive emotions, 

namely pleasure and relief. Furthermore, perceived valence of the experimental stimuli 

significantly modulated the benefits of deliberation and costs of cognitive load3. Thus, while 

both negative and positive vocalizations can be efficiently recognized, it could be that the 

recognition of positive vocalizations is more susceptible to contextual/task effects, i.e., their 

processing might be relatively less automatized. One possibility is that this relates to the 

social function of positive emotions, as it was previously argued to account for the fact 

positive vocalizations of achievement, pleasure and relief are not universally recognized, 

while negative vocalizations are (Sauter, Eisner, Ekman, et al., 2010). The communication of 

positive emotions facilitates social cohesion and affiliative behaviour, mostly with in-group 

members – with whom it is highly advantageous to build and maintain social connections – 

and their meaning could therefore be culturally variable, more dependent on learning, and 

contextually situated. Indeed, three- to seven-month-old infants already show selective brain 

responses to crying vocalizations, but the same was not found for laughter, possibly 

reflecting an earlier specialization for negative vs. positive vocalizations (Blasi et al., 2011). 

ERP evidence from adults indicates that the early automatic differentiation between 

emotional and neutral vocalizations might be more robust for negative as compared to 

positive vocalizations (Liu et al., 2012; Sauter & Eimer, 2010). Recent behavioral evidence 

from infants further suggests that the discrimination of positive vocalizations is modulated 

by learning throughout development (Soderstrom et al., 2017). Additionally, in everyday 

social interactions, positive vocal expressions often convey different meanings depending on 

context, and it might therefore be advantageous that their interpretation incorporates 

deliberate processes to some extent. Laughter is a clear illustration of this: while it is 

typically taken as an expression of positive affect, laughter can reflect a variety of distinct 

emotional states (e.g., polite agreement; affection; amusement; anxiety; embarrassment), it 

can be associated with a spontaneous genuine reaction or with a more voluntary 

3One of the negative expressions (disgust) was also affected by cognitive load, but we refrained from emphasizing this finding because 
it was observed for one contrast only (low load vs. high load conditions), and it was a marginally significant effect.
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communicative act (e.g., social laughter; McGettigan et al., 2015; Scott et al., 2014), and it 

can even be perceived as a negative expression, for instance if associated with insults and 

bullying (Otten, Mann, van Berkum, & Jonas, 2017). The interpretation of laughter (and of 

other positive vocalizations) could thus routinely involve deliberate processes to allow for 

the flexible consideration of contextual cues to optimize performance. An alternative to such 

social function account would be that our emotion- and valence-specific effects are related to 

acoustic ambiguity, i.e., it could be that acoustic cues are more ambiguous (and more 

similar) across positive vocalizations, making them more susceptible to task condition 

effects. However, ambiguity in acoustic cues would arguably be reflected in recognition 

accuracy differences (ambiguous vocalizations would be more difficult to recognize), and 

we have shown in a follow-up analysis that the pattern of results remains unchanged when 

stimuli differences in pre-test accuracy and emotional intensity are accounted for. It thus 

seems unlikely that the reported findings are reducible to differences in low-level acoustic 

cues.

Interestingly, our findings suggest a moderating role of valence (but not arousal) in the 

degree of automaticity of vocal emotion recognition, whereas previous ERP evidence 

suggested a moderating role of arousal (but not valence) in the magnitude of the rapid neural 

detection of vocal emotions (Sauter & Eimer, 2010). This emphasizes the importance of 

considering the affective dimensions of the stimuli, in addition to specific emotion 

categories, if we are to gain a mechanistic understanding of vocal emotional processing (see 

also Lima et al., 2014; Warren et al., 2006). While the early neural detection of emotional 

salience might be more determined by the arousal properties of vocalizations, the higher-

order explicit interpretation of emotional meaning might be more determined by their 

valence and associated complexity of social functions.

Additional evidence for the notion that vocal emotion recognition is an efficient and fast 

process was provided by the analysis of the relationship between latencies and accuracy. We 

examined emotion categorization accuracy as a function of the time taken to respond, and 

were able to estimate, both the minimum amount of time needed to reach accuracy levels 

above chance (~300-360 ms) and the amount of time needed to reach peak performance 

(~500-600 ms). It is important to note that the average duration of the vocalizations was 

~1000 ms, and so participants were able to accurately recognize emotions well before they 

were exposed to the full expressions. These findings extend to nonverbal vocalizations the 

results previously obtained in the context of emotional speech, and using a gating paradigm. 

In this paradigm, stimuli are gated to different durations, thereby limiting the amount of 

temporal and acoustic information that participants can use to recognize emotions (Jian et 

al., 2015; Rigoulot et al., 2013). Above-chance accuracy rates can be observed after only 

200 ms, and performance reaches high levels after approximately 400-800 ms of exposure to 

the utterance, a time window roughly similar to the one obtained in the current study. For the 

recognition of facial expressions, Tracy and Robins (2008) showed that accurate emotion 

discrimination could occur within 600 ms. More recently, using dynamic stimuli, Martinez, 

Falvello, Aviezer, and Todorov (2016) found that 250 ms of exposure to facial expressions 

might be enough for accuracy recognition, with performance rapidly increasing with longer 

exposures (500 ms and 1000 ms) and then reaching a plateau. In future studies it will be of 

interest to directly compare the time-course of emotion recognition across different types of 
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stimuli, both within the auditory modality (nonverbal vocalizations and emotional speech) 

and across modalities (auditory and visual modality). This is particularly relevant in light of 

ERP evidence showing distinct neural responses to nonverbal vocalizations and emotional 

speech (Pell et al., 2015), and behavioral evidence showing differences in emotion 

recognition accuracy across modalities (Hawk, van Kleef, Fischer, & van der Schalk, 2009).

The findings of the current study raise other interesting questions for future research. First, 

although we showed a similar pattern of deliberation and cognitive load effects across 

different levels of stimulus difficulty, emotion recognition accuracy was generally high. 

Thus, it remains to be determined if the degree of automaticity in vocal emotion recognition 

uncovered here, using stimuli previously validated to communicate the intended emotions in 

a clear way (Lima et al., 2013; Sauter, Eisner, Calder, et al., 2010), is also seen for highly 

ambiguous stimuli. Studies covering a wider range of stimulus ambiguity, and systematically 

manipulating this variable, will shed light on this question. Second, we focused on the 

recognition and discrimination of emotion categories, in line with the dominant approach in 

emotion research. However, recent work has shown that listeners can also reliably make 

more nuanced socio-emotional inferences from vocalizations, namely regarding emotional 

authenticity, i.e., to judge whether a vocalization reflects a genuine emotional state or a more 

volitional communicative act (Anikin & Lima, 2017; Lavan, Scott, & McGettigan, 2016; 

McGettigan et al., 2015; Scott et al., 2014). It will be interesting to ask whether the degree of 

automaticity is similar or different for the processing of different aspects of vocalizations. 

Finally, more developmental studies will be important in order to shed light, both on the 

relative role of learning/skill acquisition vs. predispositions in the automaticity of vocal 

emotional processing (e.g., Bargh et al., 2012) and on the potentially different trajectories of 

positive and negative vocal expressions.

To conclude, the present study forms the first demonstration that the recognition of 

nonverbal emotional vocalizations is a fast and efficient process. These are both key features 

of automatic processes, and they are relevant for the demands of everyday social 

interactions. Building on previous evidence from facial expressions, we showed that human 

vocalizations can be recognized fast and accurately, even when controlled cognitive 

resources are taxed by a concurrent task. Consistent with this, intentionally engaging in 

controlled deliberate processes improved emotion performance only minimally. These 

findings extend the automatic properties of emotion recognition to the auditory modality, 

and have implications for current debates on the neurobiology of vocal communication and 

on the automaticity of socio-emotional processes.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Hit rates (a) and false alarms (b) for each condition and emotion (Overall corresponds to all 

emotions combined). The median of posterior distribution and 95% CI are presented. The 

analyses included 8960 trials for hits and 12544 trials for false alarms.
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Figure 2. 
Magnitude of the difference between conditions in hit rates (a) and false alarms (b), 

separately for each emotion and for all emotions combined (Overall). The most plausible 

estimate of the difference between conditions and 95% CI are presented. Evidence for a 

difference between conditions can be directly inferred from the figure, corresponding to 

when the 95% CI excludes 0.
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Figure 3. 
Relationship between the valence of vocalizations and the magnitude of the difference in hit 

rates between conditions. The gray shaded area shows the 95% CI.
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Figure 4. 
Response latencies for correctly recognized target emotional expressions, separately for each 

condition and emotion. The median of posterior distribution and 95% CI are presented. The 

analysis included 8022 trials.
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Figure 5. 
Accuracy of emotion recognition as a function of response latencies (for both experimental 

and filler expressions), with overlaid density plots showing the distribution of latencies. The 

black dots correspond to observed accuracy, including hits and correct rejections, averaged 

over bins of ±25 ms. The vertical dashed lines and text labels indicate the cut-offs for outlier 

exclusion and the percentage of excluded trials. The solid smooth regression line shows the 

predicted accuracy (median of posterior distribution and 95% CI within gray shaded area), 

for all trials excluding outliers.
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Table 1
Characteristics of the experimental nonverbal emotional vocalizations (n = 10 per 
emotion, total 80). Standard deviations are given in parentheses.

Stimulus Type Duration (ms) Accuracy (%) Intensity (0-6) Valence (0-6) Arousal (0-6)

Positive

    Achievement 1018 (237) 80.0 (11.8) 4.5 (0.3) 5.2 (0.4) 5.3 (0.3)

    Amusement 1000 (244) 91.0 (6.1) 4.5 (0.8) 4.9 (0.4) 4.6 (0.7)

    Pleasure 1114 (177) 86.5 (14) 4.9 (0.4) 4.4 (0.4) 2.5 (0.5)

    Relief 916 (226) 89 (6.6) 4.7 (0.5) 3.4 (0.3) 2.0 (0.4)

    Average 1012 (225) 86.6 (10.6) 4.6 (0.6) 4.5 (0.8) 3.6 (1.5)

Negative

    Anger 1048 (170) 85 (12.9) 4.8 (0.5) 1.0 (0.3) 4.4 (0.5)

    Disgust 920 (427) 91 (9.4) 4.8 (0.5) 1.1 (0.2) 3.2 (0.5)

    Fear 914 (295) 79 (10.7) 4.5 (0.6) 1.6 (0.4) 4.1 (1.1)

    Sadness 1083 (278) 87.5 (16.5) 4.4 (0.6) 1.0 (0.5) 2.5 (0.6)

    Average 991 (304) 85.6 (13) 4.6 (0.6) 1.2 (0.4) 3.6 (1.1)

Note: Perceptual data are based on a pilot study with N = 40; accuracy data were obtained using a forced-choice emotion recognition task (n = 20); 
intensity, valence and arousal data were obtained using 7-point rating scales (0-6), with higher values indicating higher perceived emotion intensity, 
positive valence, and higher arousal (n = 20).
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Table 2
Beta coefficients for valence of vocalizations as a predictor of hit rates, separately for each 
condition. Values represent the median of posterior distribution and 95% CI on the logit 
scale (when it includes 0 = no effect).

Condition Full set of vocalizations
(n = 80)

Vocalizations with lowest
accuracy (n = 40)

All vocalizations except
amusement (n = 70)

Deliberated 0.38 [0.20, 0.58] 0.38 [0.15, 0.61] 0.42 [0.19, 0.65]

Fast 0.14 [-0.02, 0.3] 0.16 [-0.04, 0.35] 0.17 [-0.01, 0.35]

Low Load 0.08 [-0.08, 0.25] 0.16 [-0.04, 0.36] 0.31 [0.10, 0.51]

High Load 0.02 [-0.13, 0.19] 0.05 [-0.14, 0.24] 0.11 [-0.07, 0.29]
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