449 research outputs found

    Adaptive Automotive Lighting Systems

    Get PDF
    Over the past few years, the use of LEDs within the automotive and avionic industries has increased due to their high efficiency, durability and wide range of light brightness. As the use of LEDs within these industries grows, a need for reliable, high performance drivers becomes more relevant. Companies are implementing LEDs for applications involving adaptive lighting or simple dimming features. This thesis shows implementation of various non-isolated analog converters integrated with digital dimmers to achieve these adaptive lighting systems. Adaptive lighting systems involve reading an input from an external source (brake pedal or steering wheel) and changing the brightness and/or pattern of the brake/headlights to convey more information to the driver and their surroundings. The analog converters will implement Linear Technology’s LED driver IC’s, while the digital dimmers comprise of microcontrollers and discrete components. The design, simulation, and hardware verification will showcase the abilities of these analog converters. Results will demonstrate the proposed applications for both adaptive front and brake lighting

    Fault Tolerant DC–DC Converters at Homes and Offices

    Get PDF
    The emergence of direct current (DC) microgrids within the context of residential buildings and offices brings in a whole new paradigm in energy distribution. As a result, a set of technical challenges arise, concerning the adoption of efficient, cost-effective, and reliable DC-compatible power conditioning solutions, suitable to interface DC microgrids and energy consuming elements. This thesis encompasses the development of DC–DC power conversion solutions, featuring improved availability and efficiency, suitable to meet the requirements of a comprehensive set of end-uses commonly found in homes and offices. Based on the energy consumption profiles and requirements of the typical elements found at homes and offices, three distinctive groups are established: light-emitting diode (LED) lighting, electric vehicle (EV) charging, and general appliances. For each group, a careful evaluation of the criteria to fulfil is performed, based on which at least one DC–DC power converter is selected and investigated. Totally, a set of five DC–DC converter topologies are addressed in this work, being specific aspects related to fault diagnosis and/or fault tolerance analysed with particular detail in two of them. Firstly, mathematical models are described for LED devices and EV batteries, for the development of a theoretical analysis of the systems’ operation through computational simulations. Based on a compilation of requirements to account for in each end-use (LED lighting, EV charging, and general appliances), brief design considerations are drawn for each converter topology, regarding their architecture and control strategy. Aiming a detailed understanding of the two DC–DC power conversion systems subjected to thorough evaluation in this work – interleaved boost converter and fault-tolerant single-inductor multiple-output (SIMO) converter – under both normal and abnormal conditions, the operation of the systems is evaluated in the presence of open-circuit (OC) faults. Parameters of interest are monitored and evaluated to understand how the failures impact the operation of the entire system. At this stage, valuable information is obtained for the development of fault diagnosis strategies. Taking profit of the data collected in the analysis, a novel fault diagnostic strategy is presented, targeting interleaved DC–DC boost converters for general appliances. Ease of implementation, fast diagnostic and robustness against false alarms distinguish the proposed approach over the state-of-the-art. Its effectiveness is confirmed through a set of operation scenarios, implemented in both simulation environment and experimental context. Finally, an extensive set of reconfiguration strategies is presented and evaluated, aiming to grant fault tolerance capability to the multiple DC–DC converter topologies under analysis. A hybrid reconfiguration approach is developed for the interleaved boost converter. It is demonstrated that the combination of reconfiguration strategies promotes remarkable improvements on the post-fault operation of the converter. In addition, an alternative SIMO converter architecture, featuring inherent tolerance against OC faults, is presented and described. To exploit the OC fault tolerance capability of the fault-tolerant SIMO converter, a converter topology targeted at residential LED lighting systems, two alternative reconfiguration strategies are presented and evaluated in detail. Results obtained from computational simulations and experimental tests confirm the effectiveness of the approaches. To further improve the fault-tolerant SIMO converter with regards to its robustness against sensor faults, while simplifying its hardware architecture, a sensorless current control strategy is presented. The proposed control strategy is evaluated resorting to computational simulations.O surgimento de micro-redes em corrente contínua (CC) em edifícios residenciais e de escritórios estabelece um novo paradigma no domínio da distribuição de energia. Como consequência disso, surge uma panóplia de desafios técnicos ligados à adopção de soluções de conversão de energia, compatíveis com CC, que demonstrem ser eficientes, rentáveis e fiáveis, capazes de estabelecer a interface entre micro-redes em CC e as cargas alimentadas por esse sistema de energia. Até aos dias de hoje, os conversores CC–CC têm vindo a ser maioritariamente utilizados em aplicações de nicho, que geralmente envolvem níveis de potência reduzidos. Porém, as perspectivas futuras apontam para a adopção, em larga escala, destas tecnologias de conversão de energia, também em equipamentos eléctricos residenciais e de escritórios. Tal como qualquer outra tecnologia de conversão electrónica de potência, os conversores CC–CC podem ver o seu funcionamento afectado por falhas que degradam o seu bom funcionamento, sendo que essas falhas acabam por afectar não apenas os conversores em si, mas também as cargas que alimentam, limitando assim o tempo de vida útil do conjunto conversor + carga. Desta forma, é fulcral localizar a origem da falha, para que possam ser adoptadas acções correctivas, capazes de limitar as consequências nefastas associadas à falha. Para responder a este desafio, esta tese contempla o desenvolvimento de soluções de conversão de energia CC–CC altamente eficientes e fiáveis, capazes de responder a requisitos impostos por um conjunto alargado de equipamentos frequentemente encontrados em habitações e escritórios. Com base nos perfis de consumo de energia eléctrica e nos requisitos impostos pelas cargas tipicamente utilizadas em habitações e escritórios, são estabelecidos três grupos distintos: iluminação através de díodos emissores de luz, carregamento de veículo eléctrico (VE) e aparelhos eléctricos em geral. Para cada grupo, é efectuada uma avaliação cuidadosa dos critérios a respeitar, sendo com base nesses critérios que será escolhida e investigada pelo menos uma topologia de conversor CC–CC. No total, são abordadas cinco topologias de conversores CC–CC distintas, sendo que os aspectos ligados ao diagnóstico de avarias e/ou tolerância a falhas são analisados com particular detalhe em duas dessas topologias. Inicialmente, são estabelecidos modelos matemáticos descritivos do comportamento das principais cargas consideradas no estudo – díodos emissores de luz e baterias de VEs – visando a análise teórica do funcionamento dos sistemas em estudo, suportada por simulações computacionais. Com base numa compilação de requisitos a ter em conta em cada aplicação – iluminação através de díodos emissores de luz, carregamento de veículo eléctrico (VE) e aparelhos eléctricos em geral – são estabelecidas considerações ligadas à escolha de cada topologia de conversor não isolado, no que respeita à sua arquitectura e estratégia de controlo. Visando o conhecimento aprofundado das duas topologias de conversor CC–CC alvo de particular enfoque neste trabalho – conversor entrelaçado elevador e conversor de entrada única e múltiplas saídas, tolerante a falhas – quer em funcionamento normal, quer em funcionamento em modo de falha, é avaliado o funcionamento de ambas as topologias na presença de falhas de circuito aberto nos semicondutores activos. Para o efeito, são monitorizados e analisados parâmetros úteis à percepção da forma como os modos de falha avaliados neste trabalho impactam o funcionamento de todo o sistema. Nesta fase, é obtida informação fundamental ao desenvolvimento de estratégias de diagnóstico de avarias, particularmente indicadas para avarias de circuito aberto nos semicondutores activos dos conversores em estudo. Com base na informação recolhida anteriormente, é apresentada uma nova estratégia de diagnóstico de avarias direccionada a conversores CC–CC elevadores entrelaçados utilizados em aparelhos eléctricos, em geral. Facilidade de implementação, rapidez e robustez contra falsos positivos são algumas das características que distinguem a estratégia proposta em relação ao estado da arte. A sua efectividade é confirmada com recurso a uma multiplicidade de cenários de funcionamento, implementados quer em ambiente de simulação, quer em contexto experimental. Por fim, é apresentada e avaliada uma gama alargada de estratégias de reconfiguração, que visam assegurar a tolerância a falhas das diversas topologias de conversores CC–CC em estudo. É desenvolvida uma estratégia de reconfiguração híbrida, direccionada ao conversor entrelaçado elevador, que combina múltiplas medidas de reconfiguração mais simples num único procedimento. Demonstra-se que a combinação de múltiplas estratégias de reconfiguração introduz melhorias substanciais no funcionamento do conversor ao longo do período pós-falha, ao mesmo tempo que assegura a manutenção da qualidade da energia à entrada e saída do conversor reconfigurado. Noutra frente, é apresentada e descrita uma arquitectura alternativa do conversor de entrada única e múltiplas saídas, com tolerância a falhas de circuito aberto. Através da configuração proposta, é possível manter o fornecimento de energia eléctrica a todas as saídas do conversor. Para tirar máximo proveito da tolerância a falhas do conversor de entrada única e múltiplas saídas, uma topologia de conversor indicada para sistemas residenciais de iluminação baseados em díodos emissores de luz, são apresentadas e avaliadas duas estratégias de reconfiguração do conversor, exclusivamente baseadas na adaptação do controlo aplicado ao conversor. Os resultados de simulação computacional e os resultados experimentais obtidos confirmam a efectividade das abordagens adoptadas, através da melhoria da qualidade da energia eléctrica fornecida às diversas saídas do conversor. São assim asseguradas condições essenciais ao funcionamento ininterrupto e estável dos sistemas de iluminação, já que a qualidade da energia eléctrica fornecida aos sistemas de iluminação tem impacto directo na qualidade da luz produzida. Por fim, e para aprimorar o conversor de entrada única e múltiplas saídas tolerante a falhas, no que respeita à sua robustez contra falhas em sensores, é apresentada uma estratégia de controlo de corrente que evita o recurso excessivo a sensores e, ao mesmo tempo, simplifica a estrutura de controlo do conversor. A estratégia apresentada é avaliada através de simulações computacionais. A abordagem apresentada assume vantagens em múltiplos domínios, sendo de destacar vantagens como a melhoria da fiabilidade de todo o sistema de iluminação (conversor + carga), os ganhos atingidos ao nível do rendimento, a redução do custo de implementação da solução, ou a simplificação da estrutura de controlo.This work was supported by the Portuguese Foundation for Science and Technology (FCT) under grant number SFRH/BD/131002/2017, co-funded by the Ministry of Science, Technology and Higher Education (MCTES), by the European Social Fund (FSE) through the ‘Programa Operacional Regional Centro’ (POR-Centro), and by the Human Capital Operational Programme (POCH)

    A review and classification of LED ballasts

    Get PDF
    This paper presents a review on existing ballasts for light-emitting diodes (LED) with considerations to their compliance to regulations, technological challenges, and on meeting various application requirements. All existing LED ballasts, including those proposed in recent literature, have been appropriately classified and systematically organized for the discussion. The dissemination of this information and its understanding is helpful for future R&D pursuits in this area. © 2013 IEEE.published_or_final_versio

    A Novel Boost Converter Based LED Driver Chip Targeting Mobile Applications

    Get PDF
    abstract: A novel integrated constant current LED driver design on a single chip is developed in this dissertation. The entire design consists of two sections. The first section is a DC-DC switching regulator (boost regulator) as the frontend power supply; the second section is the constant current LED driver system. In the first section, a pulse width modulated (PWM) peak current mode boost regulator is utilized. The overall boost regulator system and its related sub-cells are explained. Among them, an original error amplifier design, a current sensing circuit and slope compensation circuit are presented. In the second section – the focus of this dissertation – a highly accurate constant current LED driver system design is unveiled. The detailed description of this highly accurate LED driver system and its related sub-cells are presented. A hybrid PWM and linear current modulation scheme to adjust the LED driver output currents is explained. The novel design ideas to improve the LED current accuracy and channel-to-channel output current mismatch are also explained in detail. These ideas include a novel LED driver system architecture utilizing 1) a dynamic current mirror structure and 2) a closed loop structure to keep the feedback loop of the LED driver active all the time during both PWM on-duty and PWM off-duty periods. Inside the LED driver structure, the driving amplifier with a novel slew rate enhancement circuit to dramatically accelerate its response time is also presented.Dissertation/ThesisDoctoral Dissertation Electrical Engineering 201

    A Survey, Classification and Critical Review of Light-Emitting Diode Drivers

    Get PDF
    Based on a survey on over 1400 commercial LED drivers and a literature review, a range of LED driver topologies are classified according to their applications, power ratings, performance and their energy storage and regulatory requirements. Both passive and active LED drivers are included in the review and their advantages and disadvantages are discussed. This paper also presents an overall view on the technical and cost aspects of the LED technology, which is useful to both researchers and engineers in the lighting industry. Some general guidelines for selecting driver topologies are included to aid design engineers to make appropriate choices.published_or_final_versio

    Dimming DC–DC LED Drivers: Power Losses, Luminous Efficiency & Best-in-Class

    Get PDF
    The aim of this research is to analyze, model, and compare dimming techniques for switched-inductor (SL) light-emitting-diode (LED) drivers. LEDs have become pervasive in modern lighting and automotive applications. LED drivers regulate the LED current that sets their luminous output, where dimming is an important attribute. Dimming techniques fall in one of two categories: "analog" or "duty-cycled" (pulse-width-modulated), and duty-cycled (PWM) dimming decompose into two further classes: series- or shut-switched. A comprehensive analysis of dimming techniques, corresponding power losses, and their dimming capabilities for dc-dc applications is lacking in the literature. This research aims to explain and quantify these important parameters, like luminous flux, dimming range, and luminous efficiency. This research reveals and verifies that analog dimming is the most efficient with the widest dimming range.M.S

    Self-Configurable Current-Mirror Technique for Parallel RGB Light-Emitting Diodes (LEDs) Strings

    Get PDF
    Traditional current-mirror circuits require buck converter to deal with one fixed current load. This paper deals with improved self-adjustable current-mirror methods that can address different LED loads under different conditions with the help of one buck converter. The operating principle revolves around a dynamic and self-configurable combinational circuit of transistor and op-amp based current balancing circuit, along with their op-amp based dimming circuits. The proposed circuit guarantees uniformity in the outputs of the circuit. This scheme of current-balancing circuits omitted the need for separate power supply to control the load currents through different kinds of LEDs, i.e. RGB LEDs. The proposed methods are identical and modular, which can be scaled to any number of parallel current sources. The principle methodology has been successfully tested in Simulink environment to verify the current balancing of parallel LED strings

    High-efficiency LED driver without electrolytic capacitor for street lighting

    Get PDF
    High-Brightness Light Emitting Diodes (HB-LEDs) are considered as a remarkable lighting device due to their high reliability, chromatic variety and increasing efficiency. As a consequence, a high number of solutions for supplying LED strings are coming out. One-stage solutions are cost-effective, but their efficiency is low as they have to fulfill several purposes with only one converter: Power Factor Correction (PFC), galvanic isolation (in some cases) and current regulation. Two-stage and three-stage solutions have higher efficiency as each stage is optimized for just one or two tasks and they are the preferred option when supplying several strings at the same time. Nevertheless, due to their higher cost in comparison to one-stage solutions, they are used when high-efficiency, high-performance and the possibility of supplying several strings are the main concerns. Besides, they are also used when high reliability is needed and electrolytic capacitors cannot be used. In this paper, a three-stage solution and its complete design guideline for LED-based applications is proposed. PFC is achieved by a Boost converter while the galvanic isolation is provided by an Electronic Transformer (second stage). The third stages (one for each LED string) are designed following the TIBuck schematic, but taking advantage of the load characteristics (i.e., the high value of the LED string knee voltage, approximately equal to half the string nominal voltage). Besides, a variation of the analog driving technique is also proposed. Experimental results obtained with a 160-W prototype show an efficiency as high as 93% for the whole topology and 95% for the cascade connection of the second and third stage
    corecore