1,134 research outputs found

    Unified adaptive framework for contrast enhancement of blood vessels

    Get PDF
    Information about blood vessel structures influences a lot of diseases in the medical realm. Therefore, for proper localization of blood vessels, its contrast should be enhanced properly. Since the blood vessels from all the medical angio-images have almost similar properties, a unified approach for the contrast enhancement of blood vessel structures is very useful. This paper aims to enhance the contrast of the blood vessels as well as the overall contrast of all the medical angio-images. In the proposed method, initially, the vessel probability map is extracted using hessian eigenanalysis. From the map, vessel edges and textures are derived and summed at every pixel location to frame a unique fractional differential function. The resulting fractional value from the function gives out the most optimal fractional order that can be adjusted to improve the contrast of blood vessels by convolving the image using Grunwald-Letnikov (G-L) fractional differential kernel. The vessel enhanced image is Gaussian fitted and contrast stretched to get overall contrast enhancement. This method of enhancement, when applied to medical angio-images such as the retinal fundus, Computerised Tomography (CT), Coronary Angiography (CA) and Digital Subtraction Angiography (DSA), has shown improved performance validated by the performance metrics

    Liver CT enhancement using Fractional Differentiation and Integration

    Get PDF
    In this paper, a digital image filter is proposed to enhance the Liver CT image for improving the classification of tumors area in an infected Liver. The enhancement process is based on improving the main features within the image by utilizing the Fractional Differential and Integral in the wavelet sub-bands of an image. After enhancement, different features were extracted such as GLCM, GRLM, and LBP, among others. Then, the areas/cells are classified into tumor or non-tumor, using different models of classifiers to compare our proposed model with the original image and various established filters. Each image is divided into 15x15 non-overlapping blocks, to extract the desired features. The SVM, Random Forest, J48 and Simple Cart were trained on a supplied dataset, different from the test dataset. Finally, the block cells are identified whether they are classified as tumor or not. Our approach is validated on a group of patients’ CT liver tumor datasets. The experiment results demonstrated the efficiency of enhancement in the proposed technique

    Liver tumor detection by classification through FD enhancement of CT image

    Get PDF
    In this paper, an approach for the liver tumor detection in computed tomography (CT) images is represented. The detection process is based on classifying the features of target liver cell to either tumor or non-tumor. Fractional differential (FD) is applied for enhancement of Liver CT images, with the aim of enhancing texture and edge features. Later on, a fusion method is applied to merge between the various enhanced images and produce a variety of feature improvement, which will increase the accuracy of classification. Each image is divided into NxN non-overlapping blocks, to extract the desired features. Support vector machines (SVM) classifier is trained later on a supplied dataset different from the tested one. Finally, the block cells are identified whether they are classified as tumor or not. Our approach is validated on a group of patients’ CT liver tumor datasets. The experiment results demonstrated the efficiency of detection in the proposed technique

    Opamp-based synthesis of a fractional order switched system

    Get PDF
    "The analysis, design and circuit synthesis of a fractional order switched system is presented in this paper. That system is capable of showing chaotic oscillations with a fractional order less than three, i.e., 2.4. The dynamical system is called fractional order unstable dissipative system (FOUDS); because it consists of a switching law to display strange attractors. Its dynamical behavior is explored and a circuit synthesis system is realized considering operational amplifiers. SPICE simulations agree with the numerical results.

    Motion Scalability for Video Coding with Flexible Spatio-Temporal Decompositions

    Get PDF
    PhDThe research presented in this thesis aims to extend the scalability range of the wavelet-based video coding systems in order to achieve fully scalable coding with a wide range of available decoding points. Since the temporal redundancy regularly comprises the main portion of the global video sequence redundancy, the techniques that can be generally termed motion decorrelation techniques have a central role in the overall compression performance. For this reason the scalable motion modelling and coding are of utmost importance, and specifically, in this thesis possible solutions are identified and analysed. The main contributions of the presented research are grouped into two interrelated and complementary topics. Firstly a flexible motion model with rateoptimised estimation technique is introduced. The proposed motion model is based on tree structures and allows high adaptability needed for layered motion coding. The flexible structure for motion compensation allows for optimisation at different stages of the adaptive spatio-temporal decomposition, which is crucial for scalable coding that targets decoding on different resolutions. By utilising an adaptive choice of wavelet filterbank, the model enables high compression based on efficient mode selection. Secondly, solutions for scalable motion modelling and coding are developed. These solutions are based on precision limiting of motion vectors and creation of a layered motion structure that describes hierarchically coded motion. The solution based on precision limiting relies on layered bit-plane coding of motion vector values. The second solution builds on recently established techniques that impose scalability on a motion structure. The new approach is based on two major improvements: the evaluation of distortion in temporal Subbands and motion search in temporal subbands that finds the optimal motion vectors for layered motion structure. Exhaustive tests on the rate-distortion performance in demanding scalable video coding scenarios show benefits of application of both developed flexible motion model and various solutions for scalable motion coding

    Textural Difference Enhancement based on Image Component Analysis

    Get PDF
    In this thesis, we propose a novel image enhancement method to magnify the textural differences in the images with respect to human visual characteristics. The method is intended to be a preprocessing step to improve the performance of the texture-based image segmentation algorithms. We propose to calculate the six Tamura's texture features (coarseness, contrast, directionality, line-likeness, regularity and roughness) in novel measurements. Each feature follows its original understanding of the certain texture characteristic, but is measured by some local low-level features, e.g., direction of the local edges, dynamic range of the local pixel intensities, kurtosis and skewness of the local image histogram. A discriminant texture feature selection method based on principal component analysis (PCA) is then proposed to find the most representative characteristics in describing textual differences in the image. We decompose the image into pairwise components representing the texture characteristics strongly and weakly, respectively. A set of wavelet-based soft thresholding methods are proposed as the dictionaries of morphological component analysis (MCA) to sparsely highlight the characteristics strongly and weakly from the image. The wavelet-based thresholding methods are proposed in pair, therefore each of the resulted pairwise components can exhibit one certain characteristic either strongly or weakly. We propose various wavelet-based manipulation methods to enhance the components separately. For each component representing a certain texture characteristic, a non-linear function is proposed to manipulate the wavelet coefficients of the component so that the component is enhanced with the corresponding characteristic accentuated independently while having little effect on other characteristics. Furthermore, the above three methods are combined into a uniform framework of image enhancement. Firstly, the texture characteristics differentiating different textures in the image are found. Secondly, the image is decomposed into components exhibiting these texture characteristics respectively. Thirdly, each component is manipulated to accentuate the corresponding texture characteristics exhibited there. After re-combining these manipulated components, the image is enhanced with the textural differences magnified with respect to the selected texture characteristics. The proposed textural differences enhancement method is used prior to both grayscale and colour image segmentation algorithms. The convincing results of improving the performance of different segmentation algorithms prove the potential of the proposed textural difference enhancement method
    corecore