341 research outputs found

    Personal area technologies for internetworked services

    Get PDF

    Time division multiple access scheduling strategies for emerging vehicular ad hoc network medium access control protocols: a survey

    Full text link
    [EN] Vehicular ad hoc network (VANET) is an emerging and promising technology, which allows vehicles while moving on the road to communicate and share resources. These resources are aimed at improving traffic safety and providing comfort to drivers and passengers. The resources use applications that have to meet high reliability and delay constraints. However, to implement these applications, VANET relies on medium access control (MAC) protocol. Many approaches have been proposed in the literature using time division multiple access (TDMA) scheme to enhance the efficiency of MAC protocol. Nevertheless, this technique has encountered some challenges including access and merging collisions due to inefficient time slot allocation strategy and hidden terminal problem. Despite several attempts to study this class of protocol, issues such as channel access and time slot scheduling strategy have not been given much attention. In this paper, we have relatively examined the most prominent TDMA MAC protocols which were proposed in the literature from 2010 to 2018. These protocols were classified based on scheduling strategy and the technique adopted. Also, we have comparatively analyzed them based on different parameters and performance metrics used. Finally, some open issues are presented for future deployment.Tambawal, AB.; Noor, RM.; Salleh, R.; Chembe, C.; Anisi, MH.; Michael, O.; Lloret, J. (2019). Time division multiple access scheduling strategies for emerging vehicular ad hoc network medium access control protocols: a survey. Telecommunication Systems. 70(4):595-616. https://doi.org/10.1007/s11235-018-00542-8S59561670

    Noise (AWGN) Avoidance in CDMA Systems Using the Mechanism of Spread Spectrum

    Get PDF
    In today communication systems the most probable problems are that of channel capacity, jamming and interference or noise. The channel capacity can be maximized by multiplexing the channel. While the jamming problem and for noise reduction the most important technique that we can apply is spread spectrum. That by spreading the spectrum of the original message signal, the impact of noise upon the message signal can be reduced. For that purpose, two different techniques that is DSSS(Direct Sequence Spread Spectrum) and FHSS (Frequency Hoping Spread Spectrum) can be applied. Since the two approaches are core ideas upon which CDMA system is based, so in this paper we have analyzed both the techniques to observe that h up to what extent they are efficacious in removing AWGN in CDMA systems communication. IndexTerms:DSSS, FHSS, Code Division Multiple Access (CDMA), Additive White Gaussian Noise (AWGN), spread spectrum

    QoS driven distributed multi-channel scheduling MAC protocol for multihop WSNs

    Get PDF
    Multi-Channel Dynamic Scheduling has been centric stage of research in WSNs in recent years. In this paper, we propose a Distributed Multi-Channel Scheduling MAC communication protocol (DMS-MAC) to improve the network performance of WSNs, which selects the best channel for an individual wireless sensor node. DMS-MAC supports dynamic channel assignment mechanism where each sensor node is equipped with a directional antennas. The proposed protocol helps to decrease the probability of collision, interferences and improves the overall network performance of Wireless Sensor Networks (WSNs). The protocol is most suitable for short packet transmission under low traffic networks and has ability to utilize parallel transmission among neighboring nodes and achieves increased energy efficiency when multi-channels are available. Simulation result shows that the proposed protocol improves the performance of aggregate throughput, probability of successful transmission, packet delivery ratio, energy consumption and average end-to-end delay

    A survey on MAC protocols for complex self-organizing cognitive radio networks

    Get PDF
    Complex self-organizing cognitive radio (CR) networks serve as a framework for accessing the spectrum allocation dynamically where the vacant channels can be used by CR nodes opportunistically. CR devices must be capable of exploiting spectrum opportunities and exchanging control information over a control channel. Moreover, CR nodes should intelligently coordinate their access between different cognitive radios to avoid collisions on the available spectrum channels and to vacate the channel for the licensed user in timely manner. Since inception of CR technology, several MAC protocols have been designed and developed. This paper surveys the state of the art on tools, technologies and taxonomy of complex self-organizing CR networks. A detailed analysis on CR MAC protocols form part of this paper. We group existing approaches for development of CR MAC protocols and classify them into different categories and provide performance analysis and comparison of different protocols. With our categorization, an easy and concise view of underlying models for development of a CR MAC protocol is provided

    Collaboration Enforcement In Mobile Ad Hoc Networks

    Get PDF
    Mobile Ad hoc NETworks (MANETs) have attracted great research interest in recent years. Among many issues, lack of motivation for participating nodes to collaborate forms a major obstacle to the adoption of MANETs. Many contemporary collaboration enforcement techniques employ reputation mechanisms for nodes to avoid and penalize malicious participants. Reputation information is propagated among participants and updated based on complicated trust relationships to thwart false accusation of benign nodes. The aforementioned strategy suffers from low scalability and is likely to be exploited by adversaries. To address these problems, we first propose a finite state model. With this technique, no reputation information is propagated in the network and malicious nodes cannot cause false penalty to benign hosts. Misbehaving node detection is performed on-demand; and malicious node punishment and avoidance are accomplished by only maintaining reputation information within neighboring nodes. This scheme, however, requires that each node equip with a tamper-proof hardware. In the second technique, no such restriction applies. Participating nodes classify their one-hop neighbors through direct observation and misbehaving nodes are penalized within their localities. Data packets are dynamically rerouted to circumvent selfish nodes. In both schemes, overall network performance is greatly enhanced. Our approach significantly simplifies the collaboration enforcement process, incurs low overhead, and is robust against various malicious behaviors. Simulation results based on different system configurations indicate that the proposed technique can significantly improve network performance with very low communication cost
    corecore