5 research outputs found

    Semi-Analytic Stochastic Linearization for Range-Based Pose Tracking

    Get PDF
    In range-based pose tracking, the translation and rotation of an object with respect to a global coordinate system has to be estimated. The ranges are measured between the target and the global frame. In this paper, an intelligent decomposition is introduced in order to reduce the computational effort for pose tracking. Usually, decomposition procedures only exploit conditionally linear models. In this paper, this principle is generalized to conditionally integrable substructures and applied to pose tracking. Due to a modified measurement equation, parts of the problem can even be solved analytically

    Semi-Analytic Gaussian Assumed Density Filter

    Get PDF
    For Gaussian Assumed Density Filtering based on moment matching, a framework for the efficient calculation of posterior moments is proposed that exploits the structure of the given nonlinear system. The key idea is a careful discretization of some dimensions of the state space only in order to decompose the system into a set of nonlinear subsystems that are conditionally integrable in closed form. This approach is more efficient than full discretization approaches. In addition, the new decomposition is far more general than known Rao-Blackwellization approaches relying on conditionally linear subsystems. As a result, the new framework is applicable to a much larger class of nonlinear systems

    RSS-based respiratory rate monitoring using periodic Gaussian processes and Kalman filtering

    Full text link
    corecore