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ABSTRACT

Enhancements of online Bayesian filtering algorithms for efficient monitoring
and improved uncertainty quantification in complex nonlinear dynamical systems

Audrey Olivier

Recent years have seen a concurrent development of new sensor technologies and high-fidelity

modeling capabilities. At the junction of these two topics lies an interesting opportunity for real-

time system monitoring and damage assessment of structures. During monitoring, measurements

from a structure are used to learn the parameters and equations characterizing a physics-based

model of the system; thus enabling damage identification. Since monitored quantities are physical,

these methods offer precious insight into the damage state of the structure (localization, type of

damage and its extent). Furthermore, one obtains a model of the structure in its current condi-

tion, an essential element in predicting the future behavior of the structure and enabling adequate

decision-making procedures.

This dissertation focuses more specifically on solving some of the challenges associated with

the use of online Bayesian learning algorithms, also called sequential filtering algorithms, for dam-

age detection and characterization in nonlinear structural systems. A major challenge regarding

online Bayesian filtering algorithms lies in achieving good accuracy for large dimensional sys-

tems and complex nonlinear non-Gaussian systems, where non-Gaussianity can arise for instance

in systems which are not globally identifiable. In the first part of this dissertation, we show that

one can derive algorithmic enhancements of filtering techniques, mainly based on innovative ways

to reduce the dimensionality of the problem at hand, and thus obtain a good trade-off between

accuracy and computational complexity of the learning algorithms. For instance, for particle fil-

tering techniques (sampling-based algorithms) subjected to the so-called curse of dimensionality,

the concept of Rao-Blackwellisation can be used to greatly reduce the dimension of the sampling



space. On the other hand, one can also build upon nonlinear Kalman filtering techniques, which

are very computationally efficient, and expand their capabilities to non-Gaussian distributions.

Another challenge associated with structural health monitoring is the amount of uncertain-

ties and variabilities inherently present in the system, measurements and/or inputs. The second

part of this dissertation aims at demonstrating that online Bayesian filtering algorithms are very

well-suited for SHM applications due to their ability to accurately quantify and take into account

these uncertainties in the learning process. First, these algorithms are well-suited to address ill-

conditioned problems, where not all parameters can be learnt from the available noisy data, a

problem which frequently arises when considering large dimensional nonlinear systems. Then, in

the case of unknown stochastic inputs, a method is derived to take into account in this sequential

filtering framework unmeasured stationary excitations whose spectral properties are known but

uncertain.
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Introduction

In the last decade, structural health monitoring (SHM) has become an important area of research

as it provides the means for improved and responsible management of our aging infrastructure,

leading to potential life-safety and economic benefits. In March 2017 the American Society of

Civil Engineers (ASCE) released the 2017 Infrastructure Report Card [American Society of Civil

Engineers, 2017], grading 16 categories of infrastructure with an average grade of D+, highlighting

the issues arising with our aging infrastructure and need for better maintenance. SHM provides

the potential to detect and localize potential damage before it reaches a critical level, thus avoiding

dramatic collapse. Furthermore it provides some information about the remaining lifetime of a

structure, thus helping the owner in his decision making process regarding maintenance and repair.

In [Farrar and Worden, 2007], damage is defined as “changes to the material and/or geometric

properties of [a system], including changes to the boundary conditions and system connectivity,

which adversely affect the system’s performance”. Since damage is a change in the properties of

the system, this notion only makes sense if one is comparing two different states of the structure:

the initial state (usually assumed healthy) and an unknown state, which one wants to identify as

either healthy or damaged.

In practice, damage identification has been performed for a long time using either visual in-

spection, which is subjective and is not able to detect all types of damage; or by Non-Destructive

Evaluation (NDE), which is costly, time-consuming and often provides localized information, thus
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requires a priori knowledge of the damaged region. Lately, research efforts have been directed

towards vibration-based methods, which use the fact that damage will affect the dynamic response

of a structure. Thus by measuring and analyzing the response of the structure at different locations

one should be able to detect and localize damage.

Structural Health Monitoring applications face many well-known challenges. For instance,

damage is often a local phenomenon that might not significantly affect some of the global re-

sponses typically extracted from the data, thus creating a need to exploit measurements from vari-

ous types of sensors along the structure of interest (data fusion). Also, consideration of nonlinear

effects in SHM is crucial since 1) damage can cause a structure that initially behaved linearly to

exhibit non-linear behavior (e.g., opening/closing of a crack in a beam), and 2) many structures

actually behave non-linearly even within their undamaged state. For instance, a structure might

be designed to respond nonlinearly to high intensity excitations (e.g., earthquakes), events that are

of particular interest for SHM purposes, and thus accurate damage identification methods must be

used in order to avoid misinterpreting this healthy nonlinear behavior as damage. Finally, envi-

ronmental and operational conditions (temperature, humidity etc) are often variable and complex

to quantify, which creates many uncertainties in the models to be considered; measurements are

usually corrupted with noise, and many excitations (wind, seismic ground motions, traffic...) are

random and sometimes hard to measure.

The SHM process can be decomposed into four steps, [Farrar and Worden, 2007]:

• Operational evaluation: provide a justification for performing SHM on a given system,

determine the operational and environmental conditions in which the system operates...

• Data acquisition, normalization and cleansing: decision on sensor number and placement,

acquire data and process the data...

• Feature extraction and information condensation: extract from the data some features

that are sensitive to damage (for instance, identify parameters of the model, identify fre-
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quencies and mode shapes for linear systems, etc)

• Statistical model development for feature discrimination: quantify the damage state of

the structure.

The feature extraction part of the aforementioned process, which relates to detecting the pres-

ence of damage through analysis of the damage sensitive features, has received a lot of attention

in the literature. However, in order to provide the owner of a structure with valuable information

and enable educated decision making procedures, the full damage state of the structure should be

evaluated. This can be performed by answering the following questions (hierarchy of damage,

[Rytter, 1993]).

1. Existence: Is the system damaged?

2. Location: Where is the damage?

3. Type: What kind of damage is present?

4. Extent: How severe is it?

5. Prognosis: How much useful life remains?

One possible way to look at SHM is to define it as a statistical pattern recognition problem

[Farrar and Worden, 2007]. This idea has received tremendous attention in the literature and many

statistical pattern recognition schemes have been proposed to detect and even localize damage,

both for linear and nonlinear structures, see e.g. [Balsamo et al., 2014, Bornn et al., 2010, Nair

et al., 2006]. These algorithms are very well-suited to classify healthy vs. damaged conditions

of a structure as well as locate the damage, while taking into account operational and environ-

mental variabilities. Typically, algorithms along these lines are used in an unsupervised learning

mode; they make use of a data-based (possibly non-physical) model to represent the behavior of

the system in its healthy state (autoregressive-moving-average ARMA models, support vector ma-

chines...), and extract data features that would be sensitive to the presence of damage. Then data
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coming from a structure in an unknown condition can be classified as healthy vs. damaged using

statistical classification tools, such as outlier rejection algorithms. This type of method requires

extensive training in order to learn the parameters of a statistical model that is representative of the

healthy structure and encompasses environmental variabilities. This requires having access to large

amounts of data from the healthy structure, which might not be trivial for new structures or struc-

tures not often excited. More importantly, non-physical data-based models provide limited insight

into the actual behavior of the system in its current, potentially damaged, condition (type/extent of

the damage). To get an idea of the type and extent of the damage, as well as information on future

behavior of the structure (prognosis step), coupling measured data with analytical or physics-based

models can prove more useful.

In the case of linear structures, model-based methods typically consist of estimating natural

frequencies and mode shapes of vibration using measured data (e.g., modal identification through

Frequency Domain Decomposition [Brincker et al., 2001], Observer Kalman filter Identification

coupled with Eigensystem Realization Algorithm [Mosquera et al., 2012], state-space model es-

timation via Subspace Identification [Van Overschee and De Moor, 2006]). The physical param-

eters (mass M and stiffness K matrices for instance) can also be recovered from data (see e.g.

[Mukhopadhyay et al., 2014]), or an FEM model can be updated to fit the measured data, see e.g.

[Jang and Smyth, 2017], thus providing good insight into the damage state of the system, as well

as a model of the structure in its current condition, essential for prognosis purposes.

Regarding nonlinear systems, [Worden et al., 2008] provides an early review of some of the

methods that can be used to detect damage in systems that behave linearly in their healthy state

and for which damage causes nonlinear responses. One of the methods considered is the system

identification approach, which is the focus of this dissertation, where the basic idea is to obtain an

estimate of the equations of motion of the system in its unknown condition using measured data.

Again, this allows the user to build a model of the structure in its current unknown condition, thus
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Frequentist approach

ߠ is deterministic but unknown.
 Point estimates and intervals of confidence
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• Maximum likelihood (EM)
• Least‐square estimates…

Bayesian approach

ߠ is a RV, with chosen prior ݌ሺߠሻ.
 Estimate posterior pdf using Bayes’ 

theorem
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posterior ∝	likelihood	.	prior

• Off‐line MCMC schemes
• Filtering algorithms

Parameter estimation
System equation ࢟ ൌ ࢎ ࣂ ൅ η

Figure 1: Frequentist vs. Bayesian approaches to parameter estimation

providing deep knowledge about the damage state and allowing prediction of future behavior. As

previously mentioned, one of the major challenges of SHM is the presence of many uncertain-

ties in the model, its inputs as well as the measurements. Thus it is imperative to adopt system

identification algorithms that can quantify and accurately take into account all these uncertainties.

For this reason, the Bayesian framework has been recognized to be particularly well-suited for

SHM and damage detection purposes, see e.g. [Green and Worden, 2015]. Bayesian techniques

(see Fig. 1) consider parameters θ (and states) as random variables (RVs) that are assigned a prior

probability density function (pdf) that reflects knowledge of this parameter prior to observing data;

this prior pdf can be chosen to be quite uninformative if little information is accessible prior to

monitoring. Then measurements y are used to update this prior pdf using Bayes’ theorem, and thus

yield the posterior pdf of the parameters knowing the measurements:

posterior︷ ︸︸ ︷
p(θ |y) =

likelihood︷ ︸︸ ︷
p(y|θ)

prior︷︸︸︷
p(θ)

p(y)︸︷︷︸
evidence

=
p(y|θ)p(θ)∫
p(y|θ)p(θ)dθ

Uncertainties are inherently taken into account in this framework when computing the likelihood

function p(y|θ).

A crucial advantage of the Bayesian framework lies in the fact that it is able to tackle ill-
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Figure 2: The principle of importance sampling, used in MCMC and particle filtering schemes:
independent and identically distributed (i.i.d.) samples are drawn from the chosen importance
distribution q and weighted proportionally to their likelihood ratio, yielding a set of weighted
samples from which one can compute statistics of the objective distribution p.

conditioned problems where some or all parameters cannot be uniquely identified based on avail-

able measurements [Muto and Beck, 2008], a topic that is discussed in chapter 5 of this dissertation.

Lately, research efforts have been mostly directed towards Markov Chain Monte Carlo (MCMC)

techniques, which make use of the importance sampling principle (Fig. 2) to efficiently explore the

parameter space (see e.g. [Smith, 2014] for an introduction to frequentist vs. Bayesian approaches

and MCMC techniques). MCMC techniques build Markov chains whose stationary distribution

(also called steady-state distribution) is the posterior pdf, thus sampling from the chain after it has

converged to its stationary distribution yields an estimate of the target posterior. MCMC techniques

are off-line methods; they necessitate running the entire forward problem with different values of

the parameter vector θ , each of them being selected based on the previous value. Furthermore, they

are quite computationally expensive for medium to large dimensional problems. Ongoing research

focuses on deriving novel algorithms that more efficiently explore the parameter space (Data An-

nealing principle, see [Green, 2015], sampling from a sequence of intermediate distributions that

converge to the posterior, see e.g. [Beck and Au, 2002, Beck and Zuev, 2013, Ching and Chen,

2007]).
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This thesis focuses instead on online Bayesian inference algorithms, which can be used to

monitor both the dynamic states xdyn (displacements, velocities...) and parameters θ of the model

(damping, stiffness...), using a physics-based state-space representation of the system and a time-

series of measurements y1:N . Monitoring physical quantities provides valuable insight into the full

damage state of the structure, and possibly a model of the structure in its damaged condition -

essential for prognosis. A small multi-degree-of-freedom (MDOF) example on simulated data is

provided for demonstration purposes in chapter 1, detailing how online Bayesian filtering algo-

rithms can be used to identify and characterize damage and how probabilistic results can be further

utilized in the decision-making procedure.

Online Bayesian inference algorithms for nonlinear systems, also called nonlinear filtering

algorithms, can be divided into two categories: particle filtering schemes (PF) and nonlinear

Kalman filter type algorithms, such as the widely used unscented Kalman filter (UKF). The latter is

computationally efficient, a crucial advantage for real-time monitoring applications, however it is

based on a Gaussianity assumption of the posterior pdfs and an approximate moment propagation

scheme, which may lead to inaccurate results for certain systems. The PF on the other hand is a

sampling-weighting based algorithm, which yields the true posterior pdf, even for highly nonlinear

non-Gaussian systems. However, along with other sampling techniques, the PF suffers from the

so-called curse of dimensionality, meaning that the number of particles required for the approxi-

mation, and thus its overall computational complexity, increases exponentially with the dimension

of the system studied. Thus, one of the main challenges regarding filtering algorithms is to achieve

a satisfactory trade-off between accuracy of the posterior pdfs and acceptable computational com-

plexity. This trade-off can be achieved using algorithmic enhancements of the PFs and nonlinear

Kalman filters, which is the subject of part I of this dissertation.

First, with regard to the PF, its basic formulation is reviewed in depth in chapter 2, and a

novel algorithm based on the concept of Rao-Blackwellisation is introduced in order to greatly
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reduce the dimension in which particle approximation is performed, thus mitigating the curse of

dimensionality issue (the state vector x ∈ Rnx is judiciously partitioned in two subvectors a ∈ Rna

and b ∈ Rnb in order to reduce the computational time (CT) from CT ∝ exp(nx) = exp(na +nb) to

CT ∝ na ·exp(nb)). Another way to increase accuracy and efficiency of online Bayesian algorithms

for large dimensional systems is to build upon nonlinear Kalman filtering techniques, which are

computationally efficient, and expand their capabilities to non-Gaussian pdfs. More specifically,

after an in depth review of nonlinear Kalman filtering schemes in chapter 3, we show how one

can couple non-Gaussian filters and higher order moment propagation schemes to enhance the

capabilities of nonlinear Kalman filters to different underlying probability distributions. Then in

chapter 4, the capabilities of nonlinear Kalman filters for parameter estimation in larger dimen-

sional systems, represented by FE models with tens to hundreds of DOFs, are demonstrated. A

novel algorithmic enhancement, based on the principle of marginalization applied to the unscented

transform, is derived in order to render the UKF more robust and less computationally expensive

when used to perform parameter identification within the finite element analysis framework.

As previously mentioned, another compelling property of the Bayesian framework is its ability

to take into account uncertainties in the system, measurements and inputs and propagate them to

the filtering posterior pdfs of the quantities of interest. Studying this treatment of uncertainties

with online filtering algorithms is the focus of the second part of this dissertation. In chapter 5,

the behavior of these algorithms is studied with respect to systems that exhibit challenging iden-

tifiability properties, e.g., locally identifiable systems for which the inverse problems possesses

several solutions, leading multi-modal posterior pdfs, or systems that are unidentifaible due to a

large noise to signal ratio, a topic of high relevance for monitoring of nonlinear systems whose

nonlinearities might not always be fully excited during small intensity events. Another advantage

of the state-space Bayesian framework used in online filtering is that one can easily quantify sep-

arately uncertainties due to model vs. measurement errors, as well as random inputs that might be
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hard to measure at each degree-of-freedom (DOF) of a structure. In chapter 6, a method is pre-

sented to take into account unmeasured stationary inputs in this framework, with a focus on wind

excitations.

Most of the findings reported in this thesis have already been presented in peer-reviewed jour-

nals, [Olivier and Smyth, 2017a,b,c] are published (or accepted for publication) and [Olivier and

Smyth, under review] is currently under review. The present dissertation is structured as follows.

The formulation of Bayesian sequential filtering is first presented in chapter 1. Then we intro-

duce our work on algorithmic enhancements of particle filtering schemes (chapter 2) and nonlinear

Kalman filters (chapters 3 and 4) and demonstrate the superiority of these novel formulations on

both mathematical benchmark problems and structural systems. In the second part of the disser-

tation, the problem of identifiability for parameter estimation is studied, and some of the novel

algorithms presented in Part I are used to accurately and efficiently estimate parameters for sys-

tems that exhibit challenging identifiability properties. Finally in the last chapter, the issue of

unmeasured inputs is tackled for stationary stochastic inputs whose spectral properties are known

but also uncertain.
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Chapter 1

Bayesian filtering for damage identification:

formulation and case study

1.1 Formulation of Bayesian filtering for dynamical systems

1.1.1 System equations

Many dynamical models, including structural systems, can be written as state-space models and

discretized in time to follow a process equation of the form xdyn
k+1 = f (xdyn

k ,θ ,ek), where xdyn rep-

resent the dynamic states (e.g. displacements, velocities), θ the vector of static parameters (e.g.

stiffness, damping) that characterize the system and ek a known forcing function. In Bayesian

inference, one wants to estimate the states xdyn and parameters θ from a series of measurements

y1:N , which can be contaminated by noise. Thus, the full system equations can be written as:

xdyn
k = f

(
xdyn

k−1,θ ,ek−1

)
+νk−1 (propagation equation) (1.1a)

yk = h(xdyn
k ,θ)+ηk (measurement equation) (1.1b)
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CHAPTER 1. BAYESIAN FILTERING FOR DAMAGE IDENTIFICATION: FORMULATION
AND CASE STUDY

As previously explained, taking into account uncertainties in the inputs, measurements and/or

model is crucial for SHM applications. In the framework described above, uncertainties are in-

troduced through the terms νk−1 and ηk, called system and measurement noise respectively. In

order to derive a sequential filtering formulation, these noise terms are assumed to follow certain

properties:

E[νk] = 0, E[ηk] = 0 (1.2a)

E[νkν
T
l ] = Qδkl, E[ηkη

T
l ] = Rδkl, E[νk−1,kη

T
k ] = 0 (1.2b)

i.e., the process and measurement noise are white, zero-mean and uncorrelated to each other. Very

often, the noise terms are assumed to be additive, as shown in Eq. (1.1), however, extension of

filtering methods to non-additive noise can be achieved by adding the noise terms in the state vector

and considering f and h as functions of both the states and the noise. Throughout this thesis, the

covariance terms Q and R will be assumed known. However, the parameters of these noise terms

could also be learnt using Bayesian inference (see e.g. [Kontoroupi and Smyth, 2016] for learning

parameters of additive noise terms with the UKF and [Özkan et al., 2013] for formulation with the

PF).

Finally, up until chapter 6, the excitation time series e1:k will also be assumed known (or mea-

sured) at each degree-of-freedom (DOF) of the system. Relaxation of this strong assumption will

be the focus of chapter 6. Thus in the current formulation, inputs can be introduced in the formula-

tion as either 1) known time series e1:k or 2) white noise zero-mean inputs with known covariance

(process noise term).

1.1.2 Online learning of static parameters

To perform online estimation of the full posterior pdf (i.e., combined inference of dynamic states

xdyn
0:k and static parameters θ ), several methods can be used. A very common approach is to perform
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1.1. FORMULATION OF BAYESIAN FILTERING FOR DYNAMICAL SYSTEMS

joint state/parameter filtering, that is, the state vector is augmented with the static parameters that

are assigned the propagation equation θk = θk−1. The state vector then becomes xk =

{
xdyn

k

θ

}
,

and at each time step the full posterior pdf p
(

xdyn
k ,θ |y1:k

)
= p(xk|y1:k) is inferred. This method is

used in the remainder of the dissertation.

Another approach commonly used consists in separating estimation of the dynamic states and

identification of the parameters. In [Wan and van der Merwe, 2000], an on-line dual approach

is presented, where two filtering algorithms (UKFs) are run in parallel, one for estimation of the

states, the other for estimation of the parameters, and both make use of the current estimates from

the concurrent filter to propagate to the next time step. Other dual approaches can also be derived

by combining a state filtering scheme with any parameter learning algorithm. For instance, in

[Poyiadjis et al., 2006] on-line estimation of both states and parameters is performed by combining

a particle filter for state estimation and an on-line maximum likelihood estimation procedure for

the parameters, while in [Lindsten, 2013], an off-line procedure is presented, combining a particle

smoother for the states with an expectation-maximization (EM) algorithm for the parameters.

1.1.3 Formulation of sequential filtering algorithms

In this joint state/parameter filtering framework, i.e., xk =

{
xdyn

k

θ

}
, the system can also be de-

scribed in a probabilistic format as a prior p(x0) = p(xdyn
0 |θ)p(θ) and a sequence of conditional

distributions:

• transition density function p(xk|xk−1)

• likelihood p(yk|xk)

The system described by Eq. (1.1) with noise properties as in Eqs. (1.2) is Markovian (see repre-

sentation in Fig. 1.1), which means that xk given xk−1 is independent of other past states and past
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Figure 1.1: Markov chain

observations, and yk given xk is also independent of past states and observations, i.e.:

p(xk|x0:k−1,y1:k−1) = p(xk|xk−1) (1.3a)

p(yk|x0:k,y1:k−1) = p(yk|xk) (1.3b)

Using these Markovian properties of the system, one can derive a sequential filtering procedure

to infer at each time step k the filtering posterior pdf of the states knowing all the past observations,

i.e. p(xk|y1:k). The Bayesian filtering formulation can be written at each time step k as a two-stage

approach:

• Propagation step (Chapman-Kolmogorov equation)

p(xk|y1:k−1) =
∫

p(xk|xk−1) p(xk−1|y1:k−1)dxk−1 (1.4a)

• Update step: make use of the new measurement yk and Bayes’ theorem to derive the posterior

distribution

p(xk|y1:k) =
p(yk|xk) p(xk|y1:k−1)

p(yk|y1:k−1)
(1.4b)

When the propagation and measurement functions f and h (defined in Eq. 1.1) are both linear

in the augmented state x, and both noise terms are Gaussian, posterior pdfs are exactly Gaussian

and exact inference can be performed using the well-known Kalman filter (KF). However, when

joint state-parameter estimation is performed, functions f ,h will be at least quadratic in the aug-
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1.1. FORMULATION OF BAYESIAN FILTERING FOR DYNAMICAL SYSTEMS

mented state xk =

{
xdyn

k

θ

}
(e.g., stiffness × displacement, or damping × velocity terms). Thus

for the problems at hand, f ,h will always be nonlinear functions, which renders the posterior pdfs

intractable. Two main algorithms exist to estimate the posterior pdfs when functions f ,h are non-

linear and noise terms are possibly non-Gaussian: particle filtering methods and nonlinear Kalman

filters. In particle filtering (PF), pdfs are represented using a set of samples called particles, which

are propagated forward in time and weighted according to their proximity to the measurements.

The posterior pdf at time step k estimated using a particle filter is then written as:

p(xk | y1:k)≈
np

∑
i=1

w(i)
k δ

(
xk− x(i)k

)
(1.5)

where {x(i)k ,w(i)
k }i=1:np are the weighted particles, and δ the delta dirac function. The PF can

thus handle highly nonlinear, non-Gaussian systems, as long as the number of particles np is large

enough. As will be discussed in chapter 2, the number of particles should grow exponentially with

the dimension of the problem, rendering the PF impractical for large dimensional problems unless

algorithmic enhancements, such as Rao-Blackwellisation, are used.

On the other hand, nonlinear Kalman filters make a Gaussianity assumption on the posterior

pdfs, thus only knowledge of their first and second order moments is required. This assumption

greatly reduces computational requirements compared to a PF, but it might be inexact for some

systems. An in-depth review of these algorithms and more particularly the unscented Kalman filter

(UKF) is presented in chapter 3, along with algorithmic enhancements enabling 1) employment of

non-Gaussian distributions, which are further proved to be very well-suited for structural systems

that exhibit challenging identifiability properties, as discussed in chapter 5, and 2) application to

relatively large dimensional systems, represented by finite element models with 10s to 100s of

DOFs (chapter 4).

The present study focuses on the application of such algorithms to damage detection and char-

acterization tasks for structural systems. Various examples of identification in structural systems
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using these filtering algorithms can be found in the literature, see e.g. [Chatzi and Smyth, 2009]

for identification of a 3 degree-of-freedom (DOF) highly nonlinear system using both UKF and

PF schemes, [Chatzis et al., 2015a] for an experimental validation using the UKF, [Nasrellah and

Manohar, 2010] for identification of parameters in vehicle-structure interaction problems using the

PF, or [Astroza et al., 2015] for material parameter identification through a combination of finite

element model and UKF. Applicability of such algorithms to the damage detection and characteri-

zation task is shown thereafter using a small case study on simulated data.

1.2 Online filtering for damage detection: motivating example

1.2.1 Presentation of the problem of interest

In this section we show how performing online filtering on a physics-based model of a system can

be used for damage detection and characterization purposes. In the following simulated data is

generated from a 5-DOF system, shown in Fig. 1.2. In its healthy condition, the structure already

shows nonlinear behavior at the base, modeled by a Bouc-Wen model of hysteresis. The rest of the

structure is linear when the structure is undamaged. We assume that we can measure the response

of the structure at each DOF, thus the parameter vector is identifiable.

In SHM, one collects data from the structure in an unknown condition and tries to determine

if this condition is healthy or damaged by comparing with the assumed/known healthy condi-

tion. Possible errors in damage detection are of two types (following definitions from [Farrar and

Worden, 2007]): false-positive (detecting damage when the structure is actually undamaged) and

false-negative (failing to detect damage when damage is truly present in the structure). Thus we

will consider three unknown conditions for this structure, described in Fig. 1.2, and see if we can

accurately classify healthy vs. damaged conditions.
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Known healthy condition: DOF 1 is highly nonlinear (Bouc‐Wen model of hysteresis), all other DOFs are linear
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Figure 1.2: Motivating example: system of interest and damage conditions

1.2.2 Use of filtering algorithms for online damage identification and char-

acterization

We show with this example how model-based methods can be used to detect, localize and identify

damage. This type of method requires a priori knowledge of the structure itself in order to build

a physics-based representation of the structure in its assumed healthy state and tune some of the

model parameters. In the following case, we assume that reliable estimates of the floor masses

were obtained through prior experience or identified from prior vibration data. The method then

uses a filtering algorithm (in this particular example, the UKF) to monitor in real time the behavior

of the states and unknown parameters (stiffness, damping...). If and when damage occurs, this

will translate into a change in these parameters, which we hope to detect quickly by monitoring

their behavior in an online fashion. Fig. 1.3a shows filtering of the parameters (i.e., estimation of

E [θ |y1:k] at each time step k) for the 3 unknown cases. For the unknown condition #1 (red dash-

dot line on Fig. 1.3a), the algorithm converges to the true value (undamaged) of the parameters in

few seconds and then remains at that value. This was expected since unknown condition #1 is in

fact the healthy structure. For unknown condition #2 (green solid line), the parameters converge to

their true (undamaged) value in few seconds. At t = 15 seconds, the value for k4 starts to decrease,
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(a) Convergence of some parameters (i.e., evolution in time of E [θ |y1:k])
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(b) Behavior of the global residuals for all 3 un-
known conditions (see Eq. (1.6a))
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(c) Behavior of the local residuals for each DOF
(see Eq. (1.6b)), for unknown condition #3

Figure 1.3: Motivating example: online monitoring of structures using the UKF for joint es-
timation of parameters and states, both the behavior of the parameters θ and the residuals
yk,meas−E [yk|y1:k−1] should be monitored to obtain a complete picture of the damage state (exis-
tence and location)

which was also expected since in unknown case #2, the stiffness k4 is reduced of 20% at td = 15s.

The remaining parameters remain unchanged. Thus, in this case, monitoring the behavior of the

parameters enables one to detect, localize and identify damage.

For unknown condition #3 however, looking at Fig. 1.3a, one can detect that damage has

20



1.2. ONLINE FILTERING FOR DAMAGE DETECTION: MOTIVATING EXAMPLE

occurred at t = 15s since the value of all the parameters starts to vary at that time, however lo-

calization of damage is impossible (by looking only at convergence of the parameters). In this

case, damage cannot be represented only by a change in the parameters since a new nonlinear-

ity appears in the system, a new model (different equations of motion) should be used to fit the

data. The algorithm tries to find the parameters of the undamaged model that best match the

measurements coming from this new structure/model. Even with this new set of parameters, the

undamaged model will most likely not be able to accurately predict the behavior (and thus the

measurements) of the damaged model. We can use this idea to better localize damage, by looking

at the residuals yk,meas−E [yk|y1:k−1], where yk,meas are the actual measurements from the structure

and E [yk|y1:k−1] are outputs of the filtering algorithm.

If a model is able to accurately represent the behavior of the structure, the residuals should be

small (close to 0). If damage occurs, one expects those residuals to increase. Fig. 1.3b shows,

for the 3 unknown cases, a plot of the normalized residuals (normalization is required here for the

purposes of comparison since both displacements and accelerations are measured), defined as:

global residuals:
(
yk,meas−E [yk|y1:k−1]

)T P−1
k

(
yk,meas−E [yk|y1:k−1]

)
, (1.6a)

local residuals for measurement j:

(
y[ j]k,meas−E

[
y[ j]k |y1:k−1

])2

var(y[ j]k |y1:k−1)
(1.6b)

where Pk is the covariance of the predicted measurement yk|y1:k−1. Fig. 1.3b shows a plot of this

quantity for the 3 unknown cases. We can see that for unknown cases #1 and #2 the residuals are

consistently small, meaning that our model is able to predict the behavior of the system. This was

expected since the linear model is indeed the true model for these 2 cases, and the UKF converges

to the right parameters (or close enough) in both cases. However, data from unknown condition

#3 exhibits larger residuals after damage is introduced in the system, reaching values one order of

magnitude higher than in the undamaged case. Looking at the residuals of each DOF separately

(1.3c), one can see that the residuals are the highest for DOFs 3 and 4, which is to be expected
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since the new nonlinearity (damage) appears in F34, i.e., restoring force between DOFs 3 and 4.

Thus by monitoring both the behavior of the parameters and the residuals we were able to

accurately detect and localize damage, in an on-line fashion, for the three unknown cases. Also,

by performing damage detection using a physics-based model of the structure we obtained an

insight on the type of damage introduced in the system (change in stiffness vs. creation of a new

nonlinearity).

1.2.3 Introduction of the filtering estimates into the decision making process

Another advantage of this Bayesian approach is that results are obtained in a probabilistic format,

and can thus be easily integrated into a fast decision making process. Several quantities can be

defined to assess in a quantitative fashion the structure’s integrity in real time. For some systems,

estimates of the parameters can be directly used, for instance through the definition of a damage

indicator D (for example, the model strain energy damage indicator for linear systems, [Shi et al.,

1998]). In such cases, if one has access to the pdf of the parameter vector (or its moments),

then one can compute the pdf or moments of this damage indicator at each time step k and thus

make an informed decision, comparing values with available values in the literature for instance.

For nonlinear systems however, it might be better to use performance-based methods to assess

the structure’s integrity. For instance, when designing for seismic events, thresholds are set on

maximum interstory drifts and acceleration. One could use similar techniques to check in an

online fashion if these quantities of interest reach critical values once the structure is damaged.

Again if the pdfs of the states are known, one could estimate the probability that the quantities of

interest reach the critical level, i.e., probability that the structure is damaged, in the sense that it

does not meet its design criteria any more.

Knowing the posterior pdfs of the parameters, one can also predict future behavior and perform

further analysis of the structure in its damaged condition (prognosis step) in an off-line fashion,
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using uncertainty propagation schemes to take into account uncertainties in the parameters. In

some cases (creation of a new nonlinearity for instance, unknown condition #3 in the previous

example), additional work would be needed to identify the form of the equations representing the

damaged structure. Selection of a model can be performed for instance using Bayesian model

assessment, see for instance early work on the subject from Beck et. al [Beck and Yuen, 2004] and

[Muto and Beck, 2008], and [Kontoroupi and Smyth, 2017] for an online implementation using

the UKF.

1.3 Concluding remarks

With this small case study on simulated data we show how online filtering algorithms can be used

to monitor the behavior of some physical quantities of interest in a structural system and identify

potential damage. Making use of probabilistic methods such as Bayesian filtering yields results in

a probabilistic format, which can further be integrated in decision making tools. For SHM applica-

tions, both accuracy and computational requirements of the system identification tools considered

are relevant, since one might need to assess a structure’s integrity rapidly after an event, of even

in real time if possible. As previously mentioned, the first part of this dissertation focuses on the

derivation of algorithmic enhancements of existing filtering algorithms to accurately estimate pa-

rameters and states in highly nonlinear problems, while reducing computational requirements for

medium and large dimensional systems. The second part of the dissertation studies how these ap-

proaches can be used on challenging systems such as unidentifiable systems or systems subjected

to unmeasured excitations. We start in the following chapter with a review of particle filtering and

possible enhancements using the concept of Rao-Blackwellisation.
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Chapter 2

Enhancement of particle filtering schemes

through Rao-Blackwellisation

2.1 The particle filter: strengths and weaknesses

2.1.1 The particle filter

Particle filtering schemes use Monte Carlo approximations of the posterior pdf, i.e., it is repre-

sented by a finite number of weighted samples (particles) as:

p(xk | y1:k)≈
np

∑
i=1

w(i)
k δ

(
xk− x(i)k

)
(2.1)

and expectations of functions of xk are computed by sample averages:

E [ϕ(xk) | y1:k] =
∫

ϕ(xk)p(xk|y1:k)dxk (2.2a)

≈
np

∑
i=1

w(i)
k ϕ

(
x(i)k

)
(2.2b)

with np the number of particles used for the approximation. We will often be interested in the

expectation of the state, thus ϕ (xk)= xk, and its covariance so ϕ (xk)= (xk−E (xk))(xk−E (xk))
T .
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However one can also compute higher order moments in the same fashion.

Only a limited review of the theory of particle filtering is provided here. For more details on the

theory of particle filtering one can refer, for example, to [Cappé et al., 2007, Doucet and Johansen,

2011, Gustafsson, 2010]. The main steps of the bootstrap particle filter, the simplest version of

the particle filter, can be summarized as in Fig. 2.1. Briefly: from the posterior pdf at time step

k− 1, p(xk−1|y1:k−1), one samples particles, propagates them to time step k via the propagation

equation and then weights them according to their proximity to the actual measurements. However,

as this is done sequentially over a large number of steps, one usually ends up with a set of particles

among which only a few have significant weights (impoverishment). The worst case scenario is

when only one particle has weight one, which is called collapse of the particle filter (the posterior

pdf becomes a single dirac function). To overcome this issue one adds a resampling scheme to the

algorithm, the goal being to duplicate particles with high weight while getting rid of particles with

low weights. In this way at each time step the system is ”reset”, and one focuses on regions of high

likelihood.

 

Propagate particles through the 

propagation  equation  =  sample 

from the prior  ࢖ሺ࢑࢞ǀ࢟૚:ି࢑૚ሻ 

Use  measurement   :࢑࢟ evaluate 

the  posterior   ሻ࢑:૚࢟ǀ࢑࢞ሺ࢖ by 

weighting  the  particles 

proportionally to their likelihood. 

૚ሻି࢑:૚࢟૚ǀି࢑࢞ሺ࢖

 ሻ࢑:૚࢟ǀ࢑࢞ሺ࢖

 ૚ሻ UPDATEି࢑:૚࢟ǀ࢑࢞ሺ࢖

PROPAGATION 

Figure 2.1: Two-stage approach of the bootstrap particle filter, for one time step k
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In a more general context, the particle filter can also be cast in the Sequential Importance Sam-

pling framework, as explained in [Doucet and Johansen, 2011]. Importance sampling relates to the

fact that, as the posterior pdf at time step k is unknown, one instead samples particles from an im-

portance distribution π (xk | x0:k−1,y1:k) (sometimes also called proposal distribution) from which

samples can be easily drawn. The discrepancy between the true posterior pdf and the importance

distribution is taken into account by weighting the particles as w(i)
k = w(i)

k−1
p
(

x(i)k |x
(i)
k−1

)
p
(

yk|x
(i)
k

)
π(x(i)k |x

(i)
0:k−1,y1:k)

(e.g.

[Särkkä, 2013]). A resampling scheme is then performed to mitigate the sampling degeneracy

issue, as previously mentioned. The algorithm of the PF, as seen from an importance sampling

point of view, is presented in Alg. 1. In the bootstrap particle filter previously mentioned, the

importance density function is chosen as the state-transition density

π

(
x(i)k

∣∣∣x(i)0:k−1,y1:k

)
= p

(
x(i)k

∣∣∣x(i)k−1

)
(2.3a)

from which samples are easily drawn. The recursive formula used to compute the weights is then

greatly simplified:

w(i)
k = w(i)

k−1 p
(

yk

∣∣∣x(i)k

)
(2.3b)

In the remainder of the paper, we will always use this standard importance density function.

Convergence results [Crisan and Doucet, 2002] show that, under some assumptions regarding

the resampling step, the bootstrap particle filter converges to the true posterior pdf when the num-

ber of particles goes to infinity. Also, it has been shown [Crisan and Doucet, 2002] that the error

between the true and particle estimation of the pdf does not increase in time as long as the system

is quickly mixing, which means, roughly, that the state vector at time step k is more or less inde-

pendent from xk−l , for a relatively small value of the lag l. When static parameters are added to the

state vector, the system becomes slowly mixing (θk+1 = θk), and the sample impoverishment issue

is exacerbated. This is a major drawback of the PF for SHM purposes since many static parame-

ters are added in the state vector to detect damage. Another issue that will arise when doing joint
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Algorithm 1: Particle filter with resampling step (Sequential Importance Resampling).
Initialization. for i = 1, · · · ,np do

sample x(i)0 ∼ p(x0);

assign initial importance weights w(i)
0 = 1

np

end
for k = 1, · · · ,N do

for i = 1, · · · ,np do
Propagate: draw x̃(i)k ∼ π

(
·|x(i)0:k−1,y1:k

)
;

Compute weight: w̃(i)
k = w(i)

k−1
p
(

yk|x̃
(i)
k

)
p
(

x̃(i)k |x
(i)
k−1

)
π

(
x̃(i)k |x

(i)
0:k−1,y1:k

) ;

end
Normalize weights w(i)

k = w̃(i)
k /∑

np
j=1 w̃( j)

k , i = 1, · · · ,np;
Resampling. if ESS = 1

∑
np
i=1(w

(i)
k )2

<
np
2 then

Resample (select np particles, each particle x(i)k−1 being drawn with probability w(i)
k ,

then set w(i)
k = 1

np
, i = 1, · · · ,np);

else
set x(i)k = x̃(i)k ;

end
Compute moments of the state at time step k E [ϕ(xk)|y1:k] = ∑

np
i=1 w(i)

k ϕ

(
x̃(i)k

)
.

end

estimation is the dimension of the state vector. Indeed if many parameters need to be identified,

the size of the state vector will quickly increase, rendering the use of the PF quite cumbersome.

2.1.2 The PF in high dimensional systems

Particle filters have so far been applied mostly to low-dimensional state-space models, as they

rapidly tend to fail when the number of states increases. Many authors have examined in detail

what obstacles arise when one tries to apply a PF to a very high dimensional problem.

[Bui Quang et al., 2010, Rebeschini and van Handel, 2015] examine the behavior of the mean

square error (MSE) between the true value of integral Eq. (2.2a) and its filter approximation Eq.
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(2.2b). More precisely it can be shown that the error associated with the weighting step of the

particle filter is inversely proportional to the following quantity:∫
Rd

p(yk | xk) p(xk | y1:k−1)dxk (2.4)

If the particles sampled from the prior p(xk | y1:k−1) fall in the tail of the likelihood p(yk | xk),

many weights will be zero and the particle filter will most likely degenerate and produce poor

results.

On the other hand, [Bengtsson et al., 2008, Snyder, 2011, Snyder et al., 2008] examine more

precisely the collapse issue (i.e., when only one particle gets all the weight), and its dependence on

the dimension of the system. They show for a simple example that to avoid collapse, the number

of particles should grow exponentially with the number of measurements, indirectly related to the

dimension of the state vector.

Recall that the main objective here is to estimate at each time step k the posterior distribution

p(x0:k |y1:k ), where xk is a state-vector of possibly very large size, using a weighted average over

the so-called particles. It is well known that it is challenging to estimate a probability density func-

tion in high dimensional spaces from a finite number of data points: as explained in [Silverman,

1986], the number of required data points increases exponentially with the dimension. When the

dimension of the space increases, the data becomes very sparse, which explains why the number

of required data points necessary to estimate a density distribution increases exponentially and not

linearly with the dimension of the space (curse of dimensionality). Numerically, the PF will col-

lapse during the weighting step, because in high dimensions it is very probable that the prior and

the posterior will be mutually singular, thus a particle sampled from the prior will have very low

probability under the posterior distribution (it will be assigned a very low weight).
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2.1.3 Literature review: increasing efficiency of the PF

Various methods can be used to improve efficiency of the particle filter and mitigate the degen-

eracy issue observed for medium and large dimensional systems. Improvements can usually be

classified into two categories. The first type of algorithms provide improvements of the resam-

pling step that aim at re-introducing diversity amongst the samples (e.g., adding an MCMC step,

[Doucet et al., 2001], fit a density (kernel density, mixture of Gaussians) to the particle density

estimate and sample from it, incorporate a mutation operator, [Chatzi and Smyth, 2013], a method

particularly efficient when static parameters are introduced in the state vector). The second cat-

egory of algorithms aims at increasing efficiency through a better choice of importance density

π(·|x0:k,y1:k) from which samples are drawn. Indeed, the bootstrap particle filter previously men-

tioned uses the transition density function as proposal, however particles sampled from the prior

might have low probability under the posterior, thus leading to many particles having negligible

weights. To overcome this issue, one may use a proposal distribution that already takes into ac-

count the future measurement, thus driving the particles into regions of high likelihood: see e.g.

[Snyder et al., 2015] for a discussion on the efficiency of the so-called optimal proposal, defined as

π(xk|x0:k−1,y1:k) = p(xk|xk−1,yk), [van Leeuwen, 2009] for a presentation of particle filters using

the ensemble Kalman filter EnKF as proposal distribution, auxiliary particle filters and other vari-

ants. Algorithms that have also received interest lately are the unscented particle filter [Rui and

Chen, 2001, van der Merwe et al., 2001], and sigma-point particle filter [van der Merwe, 2004];

these importance sampling schemes use the unscented Kalman filter, which we thoroughly review

in the next chapter, to generate a suitable proposal distribution and thus increase efficiency of the

particle filter. In [van der Merwe, 2004], this idea is combined with a Gaussian mixture fit to

reduce computational cost (Gaussian mixture sigma-point particle filter GMSPPF).

Another simple way to mitigate the sampling depletion problem is to modify the noise levels,

making them appear larger in the filter than they actually are in the data [Gustafsson, 2010], method
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called jittering or roughening in the literature. This is particularly interesting in the case where

static parameters are included in the state vector: these are treated as time-varying parameters

by adding artificial noise vθ , i.e. θk = θk−1 + vθ (see e.g. [Gustafsson and Hriljac, 2003] that

uses a decreasing roughening method, i.e. the noise variance of the noise term vθ decreases over

time, or [Chatzi and Smyth, 2009] for a successful application for parameter identification on a

structural system). Actually, this method is also used in other nonlinear filtering techniques that

also suffer lack of robustness when learning static parameters: in [Chui and Chen, 2009] it is

shown for systems linear in the states xdyn that adding artificial noise is required to learn the static

parameters when using an EKF; in [Wan and van der Merwe, 2000] artificial noise is added to

learn parameters using both joint and dual UKFs. A drawback of this method however is that it

increases the sampling variance, and that the noise level should be tuned carefully, which is not

trivial, especially for large dimensional systems.

Another method to increase efficiency of the particle filter that has received a lot of attention

lately in the particle filtering community, and will be the subject of the following sections of

this dissertation chapter, is the so-called Rao-Blackwellised, or marginalized, particle filter. The

main idea behind Rao-Blackwellisation is to use the structure of the equations (more precisely

conditional linearities) to marginalize out some of the states and thus use the particle filter in a

smaller dimensional space while the remaining states are inferred using a bank of Kalman filters.

The concept of Rao-Blackwellisation has already been introduced for structural systems in

[Sajeeb et al., 2009a,b]. The authors Sajeeb et al. show that the Rao-Blackwellised particle filter for

Conditionally Linear Gaussian systems cannot usually be directly applied to joint state/parameter

estimation in structural systems since equations are coupled. In their first paper, this issue is over-

come by substructuring the system into several linear and nonlinear sets. However this method

requires that such substructures exist, which will not be the case if all parameters are unknown

(which is the case treated here), because all equations will be nonlinear through multiplication of
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an unknown parameter with an unknown state (e.g., kx and cẋ). In their second paper, Sajeeb et al.

instead obtain the conditional pdf of all the states using a bank of Kalman filters, conditioned on

few states previously propagated with the particle filter. They show that increasing the analyticity

of the filtering algorithm (by using Kalman filtering as much as possible) reduces the variance of

the estimate, a conclusion that we will also observe with the enhanced algorithms derived there-

after. Finally in a third paper, [Sajeeb et al., 2010], the same authors propose a semi-analytical

particle filter that consists in locally linearizing the equations to obtain an ensemble of linearized

systems that can then be solved using Kalman filtering and further be exploited to obtain samples

for the particle filter. All these methods perform considerably better than the generic particle filter

as they provide more accurate results and lower variance estimates.

In sections 2.2 and 2.3, we first present two Rao-Blackwellized algorithms that are in many

ways related to the algorithms presented in [Sajeeb et al., 2009a,b]. However they differ on one

important point: in those two sections we are trying to directly apply and improve upon algorithms

that already exist and are extensively used in the particle filtering literature in other fields (track-

ing, navigation...): namely the marginalized particle filter for mixed linear/nonlinear state-space

models (called MLN-RBPFin the remainder of the paper) developed in [Schön et al., 2005] and

Storvik’s algorithm, developed in [Storvik, 2002] and extensively used for static parameter estima-

tion. In this way, we hope to present algorithms that are easily generalizable. More importantly,

we present in the last section of this chapter a new algorithm that combines the Marginalized PF

with second order Kalman filter (EKF2) propagation and update steps. This enhanced algorithm

is particularly well-suited for monitoring of structural systems, since high nonlinearities are often

localized while the remaining equations are bilinear in the dynamic states and static parameters.

Using this property of structural systems, a second order Taylor Series expansion enables us to

find exactly the mean and covariance of many of the states and parameters, conditioned on the few

highly nonlinear ones. In this way, we are able to greatly reduce the dimension of the sampling
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space of the particle filter, which would hopefully enable us to use this algorithm for medium size

systems.

2.2 Reducing the size of the sampling space via marginalization

2.2.1 The concept of Rao-Blackwellisation

The main idea in Rao-Blackwellisation [Doucet et al., 2000] is to partition the state vector as{
xk

}
=

{
uk

zk

}
1 and the full posterior distribution as:

p(x0:k|y1:k) = p(u0:k,z0:k|y1:k) = p(z0:k|u0:k,y1:k)︸ ︷︷ ︸
analytically tractable

inferred with MC sampling︷ ︸︸ ︷
p(u0:k|y1:k) (2.5)

where p(z0:k |u0:k,y1:k ) can be computed exactly. This is easily done for example for Conditionally

Linear Gaussian (CLG) models (Equation 2.6), where the state vector {xk} can be divided into two

parts

{
uk

zk

}
, where zk is conditionally Gaussian given the nonlinear variable uk:

uk ∼ p(uk|uk−1)

zk = G(uk−1)zk−1 +νk−1 (2.6)

yk = H(uk)zk +ηk

with ηk ∼ N (·;0,R) and νk−1 ∼ N (·;0,Q). It is important to notice that in CLG models, the

propagation equation of the nonlinear part u does not depend explicitly on the linear part z.

In this case, assuming a Gaussian prior for the linear part z, z conditioned on u can be inferred

exactly using a Kalman filter. Thus only the nonlinear part u will be inferred using solely sequential

importance sampling (particle filter). At each time step, the filtering density for uk is a particle

1Note that this decomposition might be different from a dynamic states vs. static parameters partition of the
augmented state vector.

33



CHAPTER 2. ENHANCEMENT OF PARTICLE FILTERING SCHEMES THROUGH
RAO-BLACKWELLISATION

approximation while it is a mixture of Gaussians for zk:

p(uk,zk | y1:k) =
np

∑
i=1

w(i)
k N

(
zk;z(i)k|k,P

(i)
k|k

)
δ

(
uk−u(i)k

)
(2.7)

with
{

z(i)k|k,P
(i)
k|k

}
being the mean and covariance of Kalman filter conditioned on the history of

the corresponding particle
{

u(i)0 , · · · ,u(i)k

}
. Regarding the algorithm, at each time step k, for each

particle ·(i), the propagation and update steps combine particle filter and Kalman filter equations,

see for instance [Särkkä, 2013]:

• Propagate the nonlinear part as in the PF: u(i)k ∼ p
(

uk|u
(i)
k−1

)
• Propagate the linear part, conditioned on the sampled nonlinear part u(i)k−1, as in the KF2:

[
zk|k−1,Pk|k−1

](i)
= KF propagate

(G(u(i)k−1))

{
zk−1|k−1,Pk−1|k−1

}(i)
• Weight the particles as in the PF: w(i)

k = w(i)
k−1 p

(
yk|u

(i)
0:k,y1:k

)
• Update the linear part as in the KF2:

[
zk|k,Pk|k

](i)
= KFupdate

(yk;H(u(i)k ))

{
zk|k−1,Pk|k−1

}(i)
where p

(
yk|u

(i)
0:k,y1:k

)
and p

(
uk|u

(i)
k−1

)
are Gaussian pdfs, thus easy to evaluate and sample from.

2.2.2 Rao-Blackwellisation for mixed linear-nonlinear systems

However, as explained in [Sajeeb et al., 2009a], due to the fact that equations for structural systems

are coupled, it is usually not possible to write our state-space model as in Equation 2.6 (i.e., our

systems are not Conditionally Linear Gaussian).

2Notations: the function KFpropagate takes as input
{

zk−1|k−1,Pk−1|k−1
}(i) (i.e., posterior at time step k− 1),

and outputs
{

zk|k−1,Pk|k−1
}(i) (i.e., prior at time step k), using the propagation equations of the KF to the equation

zk = G(u(i)k−1)zk−1 + νk−1. Similarly for the measurement update KFupdate. The actual equations contained in the
functions KFpropagate and KFupdate are explicitly written in Appendix A. In the remainder of the chapter, we will
write for simplicity Gk−1 for G(uk−1) and so on.

34



2.2. REDUCING THE SIZE OF THE SAMPLING SPACE VIA MARGINALIZATION

Recently, a new marginalized particle filter was derived in [Schön et al., 2005] that can be

applied to models where the propagation of the nonlinear part u also depends explicitly on the

linear part z. Those models are called, following [Schön et al., 2005], mixed linear/nonlinear

Gaussian models and can be written as:

uk = Fk−1zk−1 + fk−1 +ν
u
k−1 (2.8a)

zk = Gk−1zk−1 +gk−1 +ν
z
k−1 (2.8b)

yk = Hkzk +hk +ηk (2.8c)

Fk−1 , Gk−1 and Hk are matrices and fk−1, gk−1 and hk are vectors that can integrate terms

nonlinear in uk,k−1. Eq. (2.8c) is the measurement equation for both the linear and nonlinear parts

of the state vector, using yk as a measurement. Eqs. 2.8a and (2.8b) are propagation equations for

the nonlinear and linear parts respectively. However, the nice property that is used in algorithm 2

is that Eq. 2.8a can also be seen as a linear measurement equation for the linear part z, using uk

as a measurement. Thus, knowing uk, one can use the Kalman filter update equations to update

the mean and covariance of the linear part, and then propagate it using Eq. 2.8b. In this way, the

density p(zk |u0:k,y1:k ) is estimated using the Kalman filter (which gives the exact posterior density

for a linear system with Gaussian noise) while the density p(u0:k |y1:k ) is estimated using the PF,

which will now be used in a lower dimensional space, and the full posterior pdf can be written as

in Eq. (2.7). The full algorithm is presented in Alg. 2, in the case of diagonal covariance matrices.

The reader is referred to [Schön et al., 2005] for full proofs and derivation of the algorithm.

2.2.3 Marginalization applied to parameter learning

In this section, we consider systems in which the vector z of states/parameters that appear linearly

in the equations is composed solely of static parameters, for which the propagation equation is
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Algorithm 2: Marginalized particle filter for mixed linear/nonlinear state-space models,
adapted from [Schön et al., 2005]

Initialization; for i = 1, · · · ,np do
Sample u(i)0 ∼ p(u0) for the non linear states and assign equal weights w(i)

0 = 1
np

;

Assign for each particle z(i)0|0 = E[p0(z)] and P(i)
0|0 = cov(p0(z));

end
for k = 1, · · · ,N do

for i = 1, · · · ,np do
Propagate particles (nonlinear states) with the PF (refers to Eq. (2.8a))

u(i)k ∼N (·; µk,Σk) (2.9)

µk = Fk−1z(i)k−1|k−1 + fk−1

Σk = Qk +Fk−1P(i)
k−1|k−1(Fk−1)

T

Update 1 + Propagate: update mean & covariance of the linear subvector zk with the KF

update equations (refers to Eq. (2.8a) as a measurement equation for z and particle u(i)k as
the ”measurement”); then propagate its mean & covariance (refers to Eq. (2.8b)) 2:[

z̃k−1|k−1, P̃k−1|k−1
](i)

= KFupdate
(u(i)k ;F(u(i)k−1), f (u

(i)
k−1))

{
zk−1|k−1,Pk−1|k−1

}(i) (2.10)[
zk|k−1,Pk|k−1

](i)
= KF propagate

(G(u(i)k−1),g(u
(i)
k−1))

{
z̃k−1|k−1, P̃k−1|k−1

}(i)
Assign weights to each particle using the measurements yk

w(i)
k = w(i)

k−1 p(yk|u
(i)
k ) = w(i)

k−1N (yk; µ̂k,Sk) (2.11)

µ̂k = hk +Hkz(i)k|k−1

Sk = Rk +HkPk|k−1(Hk)
T

Update 2: update the linear states using measurements yk, using again the KF update

equations (refers to Eq. (2.8c)) 2[
zk|k,Pk|k

](i)
= KFupdate

(yk;H(u(i)k ),h(u(i)k ))

{
zk|k−1,Pk|k−1

}(i) (2.12)

end
Resample if needed and compute the quantities of interest (moments of the states):

E [uk] =
np

∑
i=1

w(i)
k u(i)k Cov(uk) =

np

∑
i=1

w(i)
k

(
u(i)k −E [uk]

)(
u(i)k −E [uk]

)T
(2.13)

E [zk] =
np

∑
i=1

w(i)
k z(i)k|k Cov(zk) =

np

∑
i=1

w(i)
k

(
P(i)

k|k

(
z(i)k|k−E [zk]

)(
z(i)k|k−E [zk]

)T
)

(2.14)

end
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simply zk = zk−1. Thus the system equations can be written as:

uk = Fk−1zk−1 + fk−1 +νk−1 (2.15a)

zk = zk−1 (2.15b)

yk = Hkzk +hk +ηk (2.15c)

with Fk−1, Hk, fk−1 and hk matrices and vectors that can contain nonlinear terms in uk−1,k. This

special case is of interest for structural systems since the stiffness and damping parameters c,k

usually appear linearly in the equations of motion. It is also important to notice that the vector u is

composed of both the dynamic states and the parameters that appear nonlinearly in the equations,

if any. In our numerical example in section 2.3, the Bouc-Wen parameter n appears nonlinearly in

the equations and thus uk =

{
xk

n

}
, while all other parameters appear linearly in the equations and

thus form the vector z.

For this type of system, two solvers that make use of the concept of Rao-Blackwellisation can

be used: the MLN-RBPFand Storvik’s algorithm.

Using the marginalized particle filter for mixed linear/nonlinear Gaussian systems

In [Schön and Gustafsson, 2003], the method described in section 2.2.2 is applied to parameter

estimation in the case where the parameters are conditionally Gaussian given the dynamic states

(or vice versa). Such a system can be written in the form Eq. 2.15, which is the same as Eq. 2.8

with G= I and g= 0, thus the MLN-RBPFcan be directly applied. We furthermore write z(i)k|k = µ
(i)
k

and P(i)
k|k =C(i)

k in Equation 2.7.

Using Storvik’s algorithm

In on-line parameter estimation, a similar concept is used in [Storvik, 2002] to marginalize static

parameters out from the full pdf, while using the PF to recover the dynamic states. Storvik’s algo-
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rithm can be applied to systems in which the pdf of the static parameters p(θ |x0:k,y1:k) depends

only on some low dimensional sufficient statistics sk that can be easily updated at each time step,

i.e.:

p(θ |x0:k,y1:k) = p(θ |sk) (2.16a)

sk = update(sk−1,xk,yk) (2.16b)

where p(θ |sk) is known and easy to sample from. In this way, a new parameter vector can be

simulated at each time step without using previous values of the parameter vector, which helps

prevent the problem of impoverishment. Going back to notations in Equation 2.15, if the static

parameters in vector z appear linearly in the propagation equation, the pdf p
(

z|s(i)k

)
is Gaussian,

thus the sufficient statistics are its mean vector and covariance matrix s(i)k = {µ(i)
k ,C(i)

k }, and the

update function consists of a Kalman filter update, in a similar fashion as for the MLN-RBPF. For

each time step k and for each particle ·(i), Storvik’s algorithm can then be decomposed into 2 steps:

(1) sample a realization z(i) from p
(

z|u(i)0:k−1,y1:k−1

)
= p

(
z|s(i)k−1

)
, (2) knowing this realization z(i),

run a PF for uk, i.e. sample from p
(

uk|u
(i)
k−1,z

(i)
)

and weight proportionally to p
(

yk|u
(i)
k ,z(i)

)
. The

detailed algorithm is given in Alg. 3.

It can be noted here that even though both Storvik’s algorithm and the MLN-RBPFare based

on the same decomposition of the full pdf, there exists an important difference between the two

algorithms. In Storvik’s algorithm, a realization of z|u(i)0:k,y1:k is simulated at each time step, while

in the MLN-RBPF, all the equations are re-written in terms of {µ(i)
k ,C(i)

k }, where p
(

z|u(i)0:k,y1:k

)
=

N (z; µ
(i)
k ,C(i)

k ), and no realization is ever generated from this pdf.

Again, Storvik’s algorithm involves, for each particle, an update of the sufficient statistics of

the static parameters, conditioned on sampled particle u(i)k and measurement yk at time step k:

s(i)k = update
(

s(i)k−1,u
(i)
k ,yk

)
(2.17)

Examples for systems where the parameters appear linearly in the propagation equation are pre-
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Algorithm 3: Storvik’s algorithm, using standard proposal distributions (importance densi-
ties) for both dynamic states u and static parameters z

Initialize u0 as in PF, also initialize s0;
for k = 1 : N do

for i = 1 : np do
sample z(i) from p

(
z|s(i)k−1

)
;

sample u(i)k from p
(

uk|u
(i)
k−1,z

(i)
)

;

evaluate importance weights via w(i)
k = w(i)

k−1 p
(

yk|u
(i)
k ,z(i)

)
;

end
resample particles;
for i = 1 : np do

update sufficient statistics of the static parameters via

s(i)k = update
(

s(i)k−1,u
(i)
k ,yk

)
end

end

sented in [Storvik, 2002]. However, the systems of interest for SHM purposes are more complex

since the same static parameters will appear in both the propagation and the measurement equa-

tions (Equation 2.15), a case not often considered in the literature.

The way we developed the update equation (2.17) in the case where the same parameters appear

in both the propagation and measurement equation is as follows:

• write the measurement yk as a function of vector u(i)k−1 and static parameters z, by combining

the propagation and measurement equations:

yk = g(u(i)k−1,z,νk−1,ηk) (2.18a)

= h( f (u(i)k−1,z,νk−1),z,ηk) (2.18b)

If the same parameters appear linearly in both f and h, they will appear quadratically in g
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• using also the propagation equation one can write:

u(i)k = f (u(i)k−1,z,νk−1) (2.19a)

yk = g(u(i)k−1,z,νk−1,ηk) (2.19b)

• the first equation of this system is linear in z so one can directly apply the Kalman filter

update equations to update z, conditioned on u(i)k . On the contrary g is quadratic in z thus

one needs to linearize it as g ' g̃ = Gz(i) where Gz(i) is the Jacobian of g with respect to z

computed using realizations u(i)k−1 and z(i)k−1 (same procedure as the one used in the Extended

Kalman filter, see note in appendix A for more details on the EKF)

• now one can write the following system, linear in z:

u(i)k = f (u(i)k−1,z,νk−1) (2.20a)

yk = g̃(u(i)k−1,z,νk−1,ηk) (2.20b)

thus at each time step, for each particle, one can apply the KF or EKF update equations to

update the sufficient statistics s(i)k , knowing both u(i)k and yk.

Several comments can be made on this update algorithm. First, one can see that the way we

tackle the measurements yk by creating a new function g is similar to what is done in the dual

UKF (presented in [Wan and van der Merwe, 2000]). However, in the dual UKF this step is done

only once per time step, thus the correlation between dynamic states and static parameters is lost.

Here instead, this update is performed for each particle; thus this correlation is preserved. The

second comment is that linearizing g can create some error. However as will be shown later in the

numerical example, in the systems that are of interest for us this error will be negligible, due to the

fact that the propagation equation is discretized with small time steps.
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Posterior pdf of the marginalized static parameters

Using those two algorithms (MLN-RBPFand Storvik’s algorithm), the posterior filtering distribu-

tion of the states and parameters can be written as:

p(uk,zk | y1:k) =
np

∑
i=1

w(i)
k N

(
zk; µ

(i)
k ,C(i)

k

)
δ

(
uk−u(i)k

)
(2.21)

where z is a vector composed of static parameters that appear linearly in the equations. Then the

expected value of these marginalized static parameters is computed as:

E [z | y1:k]≈
np

∑
i=1

w(i)E
[
z|u(i)0:k,y1:k

]
=

np

∑
i=1

w(i)
µ
(i) (2.22)

i.e., the posterior z|y1:k is a mixture of np Gaussians and the expected value of z is the weighted

sum of the means.

2.2.4 Rao-Blackwellisation outputs smaller variance estimates

Rao-Blackwellisation algorithms output estimates with lower variance than the standard particle

filter estimates. This can be understood intuitively as the dimension of the space where impor-

tance sampling is performed is reduced, while in the remaining dimensions inference is performed

analytically using an optimal filter (here, the Kalman filter for linear Gaussian systems). [Doucet

et al., 2000], which first presented this concept of Rao-Blackwellisation for particle filters, provides

mathematical proof of this property.

In practice, this means that methods that use Rao-Blackwellisation should produce more con-

sistent results over several runs. Indeed, as we will see at the end of this paper, our new algorithm

that uses two levels of marginalization produces parameter estimates with lower sampling variance.
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2.3 Numerical Validation

2.3.1 Structural System

These algorithms were tested on a highly nonlinear 3-DOF dynamic system that was already pre-

sented in [Chatzi and Smyth, 2009]. The Bouc-Wen model of hysteresis is used for the first degree

of freedom to model high nonlinearities at the base of the structure, as shown in Fig. 2.2. Accord-

ing to this model, the restoring force is:

F(t) = k1r1(t) (2.23)

r1(t) is the hysteretic displacement and follows a highly-nonlinear equation of motion:

ṙ1(t) = ẋ1(t)−β |ẋ1(t)| |r1(t)|n−1 r1(t)− γ ẋ1(t) |r1(t)|n (2.24)

Figure 2.2: 3-DOF structural system considered in simulations, adapted from [Chatzi and Smyth,
2009]
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The dynamic equations of motion are then as follows:m1 0 0
0 m2 0
0 0 m3




ẍ1

ẍ2

ẍ3

+

c1 + c2 −c2 0
−c2 c2 + c3 −c3

0 −c3 c3




ẋ1

ẋ2

ẋ3


+

k1 k2 −k2 0
0 −k2 k2 + k3 −k3

0 0 −k3 k3




r1

x1

x2

x3

=−üg


m1

m2

m3

 (2.25)

This system equation can then be discretized using a forward Euler scheme (integration time step

dt = 0.005s in our case) and cast in state space form, using the state vector:

x =
[
x1 x2 x3 ẋ1 ẋ2 ẋ3 r1

]T
∈ R7 (2.26a)

Assuming m1 = m2 = m3 = 1, the system is parameterized by:

θ =
[
k1 k2 k3 c1 c2 c3 β γ n

]T
∈ R9 (2.26b)

We simulate data by running the problem with zero initial conditions, using a 4th order Runge-

Kutta scheme, using as true parameter vector:

θtrue =
[
8 8 8 0.25 0.25 0.25 2 1 2

]T
(2.27)

We also generate measurements (accelerations at three DOFs), to which we add 10% RMS Gaus-

sian noise. We also add 10% RMS noise to the excitation üg, to represent possible error made

when measuring the excitation.

In those equations, the nonlinearities appear in two forms:

• the Bouc-Wen model itself,

• the multiplication of a unknown parameter with an unknown state (e.g., kx or cẋ), in both the

process and the measurement equations.

Also, one can see that, except for the Bouc-Wen parameters β , γ and n that do not appear in the

measurement equations, the same parameters (stiffness and damping) appear in both the process
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and the measurement equations. This is very common for this type of structural system, but not

commonly considered in the particle filtering literature. Indeed problems solved using particle

filters usually exhibit unknown static parameters in only one of the two equations, or different

parameters in the two equations, which simplifies the parameter learning part. Finally as explained

in [Sajeeb et al., 2009a], in such structural systems the equations are coupled, thus one cannot

easily extract a nonlinear subspace that would follow a Markov process, i.e., this system is not

Conditionally Linear Gaussian. However, we can see that except for the Bouc-Wen parameter n,

all the parameters appear linearly in all of the equations. This means that we can use a marginalized

particle filter for mixed linear/nonlinear states (MLN-RBPF), or Storvik’s algorithm with our new

update equations, marginalizing out the linear parameters.

2.3.2 Quantities of interest computed for comparison of performance be-

tween several methods

From a SHM perspective, accurate estimation of the structural parameters is crucial. When using

simulated data, the true value of the parameter vector θtrue is known and can be easily compared

with the identified value, which can be defined as the mean value of the posterior pdf at the end of

the filtering process, i.e., θid = E [θ |y1:N ]. However, in order to not overemphasized the effect of

the one final point, we decided here to average over the last few time steps, i.e.:

θid =
1
l

N

∑
k=N−l+1

E [θ |y1:k] (2.28)

with l = 80, i.e., we average the results over the last 0.40s, which represents roughly a quarter of a

loop of the hysteresis variable. To observe convergence over time of the parameters, one can plot

the evolution over time of the mean value of the posterior pdf, i.e., plot θk = E [θ |y1:k] as a function

of the time step k.

Also, to validate the method we use the identified parameter θid and re-run the equations of

44



2.3. NUMERICAL VALIDATION

motion, using zero initial conditions and the MATLAB ode45 solver. This will output a time series

{xval,k}k=1:N , and we can then plot the hysteresis loop and compare with the true one. Both the true

loop and the validation one are generated using the clean excitation, as we want to compare the

behaviors of the true and identified system to the true excitation. To look at errors on the dynamic

states, we will compute the coefficient of variation of the root mean squared error, used to compare

two time series and defined as:

CV (RMSE)states =

√
1
N ∑

T
k=1(xk− xtrue,k)2

1
N ∑

N
k=1 xtrue,k

(2.29)

where xk can be either the time series obtained during online learning, i.e. E [xk|y1:k], or the one

obtained after validation with the last parameter value, i.e., xval,k.

2.3.3 Degeneracy of the bootstrap particle filter

First we ran the problem with the generic bootstrap particle filter using 500 particles, no noise

added to the static parameters. We chose lognormal priors for damping and stiffness parameters

(admissible region for those parameters is R+), a uniform prior U(1,5) for n and a uniform prior

over an admissible region of {β ,γ}, which is {β ≥ 0,β ≤ 5, |γ| ≤ β}.

We used diagonal covariance matrices for both the process and measurement equations. For

the measurement equations, we used the same noise level as the one actually added to the mea-

surements and excitation. Idem for the process noise corresponding to the velocity states. For the

displacements we use a very small variance. Because we have simulated data, we also know that

our Bouc-Wen model of hysteresis is exact, thus there should not be noise in this equation either.

However, because in real life it is not possible to assume that the system is perfect, we used a

non-zero variance for this equation (σr = dt× 5% RMS noise on ẋ) to see how the particle filter

reacts to non-zero noise.

Figures 2.3a and 2.3b show the convergence results and validation hysteresis loop respectively.
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Figure 2.3: Bootstrap particle filter: convergence results, highlighting the particle degeneracy
phenomenon observed when using a generic PF

We can see that the particle filter degenerates quickly, then the particles are stuck on one value and

cannot learn anymore from the incoming data. Then the final parameter vector obtained is not able

to reproduce the characteristics of the system, as can be seen by plotting the validation hysteresis

loop.
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2.3.4 Rao-Blackwellisation

Equations for the MLN-RBPF

To use Rao-Blackwellisation for this system, we define the linear and nonlinear vectors as:

uk =
[
x1 x2 x3 ẋ1 ẋ2 ẋ3 r1 n

]T

k
∈ R8 (2.30a)

zk =
[
k1 k2 k3 c1 c2 c3 β γ

]T

k
∈ R8 (2.30b)

The static parameters that appear linearly in the equations form the vector zk, while the vector

uk contains the dynamic states and the nonlinear Bouc Wen parameter n. Then we can use the

MLN-RBPFpresented in Alg. 2 for a system of the form Equation 2.15. More precisely, the

matrices and vectors F , f , H and h of the process and measurement equations respectively can be

computed as follows (using notation xi j = xi− x j):



x1

x2

x3

ẋ1

ẋ2

ẋ3

r1

n


[k]

=

f (uk−1)︷ ︸︸ ︷

x1 +dt · ẋ1

x2 +dt · ẋ2

xn +dt · ẋ3

ẋ1−dt · üg

ẋ2−dt · üg

ẋ3−dt · üg

r1 +dt · ẋ1

n


[k−1]

+dt



0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
−r1 x21 0 −ẋ1 ẋ21 0 0 0

0 x12 x32 0 ẋ12 ẋ32 0 0
0 0 x23 0 0 ẋ23 0 0
0 0 0 0 0 0 −|ẋ1| |r1|n−1 r1 −ẋ1 |r1|n

0 0 0 0 0 0 0 0


[k−1]︸ ︷︷ ︸

F(uk−1)



k1

k2

k3

c1

c2

c3

β

γ


(2.31a)

yk =


ẍ1

ẍ2

ẍ3


[k]

=

h(uk)︷ ︸︸ ︷
−üg

−üg

−üg


[k]

+

−r1 x21 0 −ẋ1 ẋ21 0 0 0
0 x12 x32 0 ẋ12 ẋ32 0 0
0 0 x23 0 0 ẋ23 0 0


[k]︸ ︷︷ ︸

H(uk)

zk (2.31b)
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Equations for Storvik’s algorithm

To use Storvik’s algorithm, since the same parameters appear in both the process and measurement

equations, we need to write the measurements at step k as function of z and uk−1, then compute its

Jacobian to use the EKF (method presented in section 2.2.3).

Performance of the marginalized algorithms

Fig. 2.4 shows the behavior of the MLN-RBPFand Storvik’s algorithm for the same problem,

again with 500 particles and the same prior for the parameters. We can see that the PF no longer

collapses, and the results are much better for the stiffness and damping parameters. It also seems

that the MLN-RBPFperforms a little bit better than Storvik’s algorithm.

However, we still have problems learning the Bouc-Wen parameters β , γ and n. Let’s recall

that the propagation equation for static parameters is θk+1 = θk, thus static parameters are not

learnt during propagation. They can only be learnt via their correlation with other states and

through the measurement update. However the 3 parameters β , γ and n do not appear directly in

the measurement equation h, they only influence the likelihood indirectly through the hysteresis

variable r1 that appears in the equation of the first measurement y1 = ẍ1. This renders learning of

these 3 parameters more difficult3, thus it seems that either more particles or an improved algorithm

would be needed to obtain good estimates of those Bouc-Wen parameters.

3To see more clearly this sensitivity of the likelihood to the parameters, we also run a maximum likelihood estimator
(described in [Poyiadjis et al., 2006]), i.e., while the states are recovered through the PF, the estimated static parameters
are computed at each time step by maximization of the likelihood p(y1:k|θ). Our numerical experiments show that
if the acceleration at DOF 1 is not measured, the gradients ∂ p(y1:k|θ)

∂β ,γ,n are zero at each time step, i.e., one cannot learn
those parameters via on-line likelihood maximization. Indeed this can be easily explained since if ẍ1 is not measured,
neither β ,γ,n nor r1 appear explicitly in the measurement equation h. Thus the parameters β ,γ,n do not have any
influence on the likelihood at the current time step, which explains why the gradients are zero.
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Figure 2.4: Performance of the MLN-RBPF(blue) vs. Storvik’s algorithm (green)

2.4 Improvements on learning the Bouc Wen parameters

2.4.1 Second Order EKF for second level of marginalization

As mentioned previously, the nonlinearities in the problem studied, and more generally in problems

of interest for SHM purposes, come from two sources:
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• multiplication of an unknown state with an unknown parameter (bilinear nonlinearities in

dynamic states and parameters)

• Bouc Wen model of hysteresis (localized high nonlinearity)

In many structural systems of interest for SHM, high nonlinearities are localized, thus only few

states are actually involved in highly nonlinear equations. Thus, conditioned on those few states

and parameters (in our example, conditioned on ẋ1,r1,n) the system is bilinear in the states and pa-

rameters. Recalling basics of nonlinear Kalman filtering (extended Kalman filtering for instance),

we know that it is possible to find exactly the mean and covariance of a multivariate Gaussian

random vector that undergoes a quadratic transformation, through a second order Taylor Series

Expansion of this transformation (for a quadratic, or bilinear, transformation, the 3rd order and

higher derivatives are 0, thus there is no error term in the second order Taylor series expansion).

Using this concept in nonlinear Kalman filtering gives rise to the so-called second order extended

Kalman filter, whose detailed equations are given in Appendix A (see for instance [Särkkä, 2013]

for a detailed derivation of those equations). This filter has been gaining some interest lately, due

to its exactness for quadratic transformations over other filters. For instance, Table 2.1 shows the

mean and covariance of a transformed Gaussian random variable (prior is x ∼ N (·;0, Inx)), for a

quadratic transformation z = g(x) = xT x, obtained with different methods. The theoretical distri-

bution of the transformed variable z is χ2(nx), with mean nx and variance 2nx. Table 2.1, adapted

from [Gustafsson and Hendeby, 2012], shows that using a second order Taylor series expansion

(T2) gives the correct mean and covariance, while the first order Taylor expansion (T1) and even

the unscented transform (UT), used in the UKF, do not output exact results.

Table 2.1: Nonlinear approximation of xT x, x is nx-dimensional for x∼N (·;0, Inx), adapted from
[Gustafsson and Hendeby, 2012]

theory T1 T2 UT
mean nx 0 nx nx

covariance 2nx 0 2nx 2n2
x
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Thus here let’s consider in our numerical example the partition of the augmented state vector

xbl =
[
x1 x2 x3 ẋ2 ẋ3 k1 k2 k3 c1 c2 c3 β γ

]T
∈ R13 (2.32a)

xn =
[
ẋ1 r1 n

]T
∈ R3 (2.32b)

The vector xbl undergoes only quadratic transformations, thus knowing the measurements yk and

the nonlinear states xn one can find its mean and covariance using a EKF2. Plugging this idea into

the Rao-Blackwellised concept can be done by running a marginalized particle filter for mixed

linear-nonlinear Gaussian systems, using second order extended Kalman filter propagation and

update equations instead of the normal Kalman filter ones. More precisely, in Alg. 2, use u = xn,

z = xbl , and replace the KF propagate and KFupdate functions with the EKF2 propagate and

EKF2update ones respectively, detailed in Appendix A. This marginalized particle filter with

EKF2 updates will be referred in the remainder of the paper as MPF-EKF2.

It is very important to recognize that no linearization of a high nonlinear equation is performed

here. The posterior pdf of any state or parameter that undergoes a transformation that is neither

quadratic nor linear is inferred using the particle filter. Any linearization of a high nonlinearity

would create some error; here we only use the second order EKF inference for quadratic functions,

and simple EKF for linear functions. However, there is a Gaussian approximation done for the

quadratically transformed variables, i.e., we assume that conditioned on the measurements yk and

the highly nonlinear variables xn, the pdf of xbl is Gaussian, which is not exact. However, this

approximation is done for each particle, not for the overall pdf, thus the overall pdf can still be

non-Gaussian (mixture of Gaussians). This small assumption enables us to compute analytically

the mean and covariance of xbl conditioned on yk and xn exactly, thus outputting better results with

the same number of particles, as will be shown in the following section.

Another important observation is that with this last algorithm, the number of states that are

inferred only via particle approximation (here xn ∈ R3) does no longer scale with the dimension
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of the problem as it was for the MLN-RBPFand Storvik’s algorithm. This will generalize to larger

structures as long as the high nonlinearities are localized, which is often the case for structural

systems. Thus, this provides some optimism for the use of this last algorithm on higher dimensional

systems.

2.4.2 Results and discussion

Results of this new algorithm vs. the MLN-RBPFare shown in Fig. 2.5. Again we can see that

this new algorithm performs very well for the stiffness and damping parameters. Results for the

Bouc-Wen parameters vary from one run to another. To look more precisely at results for the static

parameters, the three solvers were run 50 times each; then for each run the identified parameter θval

was computed (as explained in section 2.3.2). Then we looked at the statistics (mean and standard

deviation) of this identified parameter vector. Results are shown on Fig. 2.6: a cross is drawn for

each parameter estimate, its position indicates the mean value over 50 runs, its size indicates the

standard deviation over 50 runs in each direction. First we can observe that the standard deviation

for damping and stiffness parameters is much lower for our new algorithm, meaning that each run

outputs almost the same results, and those results are very good for the stiffness, as well as c1

and c3. We are overestimating c2 with all three algorithms, however with our last algorithm we

obtained about 20% error on average over the damping parameters, which is generally acceptable

for damping parameters that are usually harder to recover than stiffness parameters. Concerning

the Bouc-Wen model parameters, we can see that on average γ and n are pretty well recovered

with our new algorithm. However the parameter β is not well recovered. This is a trend that we

have observed on all runs (even with other filters), i.e., the β parameter seems to be the hardest

to recover. Note however that this would most likely vary with the excitation, response levels,

frequency content e.t.c.

We can also observe in Fig. 2.5 that our new algorithm performs better when looking at the
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Figure 2.5: Performance of the MLN-RBPF(blue) vs. the novel MPF-EKF2(red)

NRMSE of the dynamic states (i.e., error between inferred hidden states and the true states).

Also, even though results on the damping parameters are acceptable (a little bit less than 20%

error on average with our last algorithm), we can observe some bias in the identified parameter,

especially for parameter c2. Indeed Fig. 2.6 shows that our last algorithm consistently outputs

overestimated values of the damping parameters, especially for c2. Also, the parameters β and
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γ , which govern the shape of the hysteresis loop are usually a little bit overestimated. However,

when we look at the validation loop, it can be very well recovered, meaning that the error on some

parameters compensates the error on others. For example, Fig. 2.7 shows the results for one run

of our new algorithm, where the validation loop is very good, which is pretty hard to achieve for

such hysteretic systems. However, the identified parameter vector shows clear bias for c2 and β :

θval =
[
7.973 7.912 7.943 0.277 0.342 0.278 3.418 0.960 2.488

]T
(2.33)

to be compared to the true values:

θtrue =
[
8 8 8 0.25 0.25 0.25 2 1 2

]T
(2.34)

We believe that those errors could be reduced if we could use a better discretization scheme than the

forward-Euler. Actually, since the underlying process is continuous, one could use a Continuous-
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Figure 2.7: A single run with the MPF-EKF2

Discrete Sequential Importance Resampling algorithm, as derived in [Sottinen and Särkkä, 2008].

Furthermore, in this same paper Rao-Blackwellisation algorithms are also derived for continuous-

discrete systems (i.e., continuous process equation and discrete measurements, as is actually the

case for us), so those algorithms might be adapted and applied to our systems of interest.
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2.5 Concluding remarks

In this chapter we have tackled state estimation and parameter learning in structural systems us-

ing particle filtering algorithms. These algorithms are known to yield the true posterior pdf of the

state vector, even for highly nonlinear, non-Gaussian systems and are thus very attractive theoreti-

cally for monitoring of highly nonlinear structural systems. However, in practice, particle filtering

schemes are quite cumbersome to run, if not impossible, on large dimensional systems, since they

tend to collapse into a single particle. This problem is also exacerbated when static parameters are

added to the state vector, a strong disadvantage for damage detection applications.

As shown in this chapter, enhanced particle filters can be derived using the concept of Rao-

Blackwellisation, yielding algorithms that are particularly well-suited for structural systems with

localized nonlinearities. Several methods can be thought of to further improve upon these algo-

rithms, such as using an optimal proposal, or an auxiliary particle filter, method already used in

[Carvalho et al., 2010] as an improvement upon Storvik’s algorithm for parameter learning. An-

other idea that has appeared in the literature is that of a block particle filter derived in [Rebeschini

and van Handel, 2015]. This algorithm uses the fact that high dimensional systems usually repre-

sent phenomena or structures that are spatially distributed over relatively large distances (for us,

numerous degrees of freedom, not all connected to each other), thus one can assume that the dy-

namics at one degree of freedom are mostly dependent on measurements performed in its vicinity.

This translates mathematically into a decay of correlation as the actual spatial distance between the

degrees of freedom increases. In [Rebeschini and van Handel, 2015], it is explained that using this

property can provide a mechanism to overcome the curse of dimensionality; however, the problem

of static parameters has not been tackled in this context and should be studied carefully.

As previously mentioned, the filtering task can also be performed using nonlinear Kalman filter

type algorithms, which are known to be much more computationally efficient than particle filtering

schemes. However, these algorithms are based on a Gaussianity assumption of the posterior pdfs,
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an assumption that might be hard to validate for nonlinear systems and might lead to erroneous

results. As we will see in the next chapters, the validity of this Gaussianity assumption will highly

depend on the distribution of the noise terms, as well as the identifiability properties of the system.

The following chapter reviews in detail the assumptions made in the widely used unscented Kalman

filter, and inspects this Gaussianity assumption and order of accuracy of the so-called unscented

transform for several nonlinear systems whose parameter vector is uniquely identifiable knowing

the given measurements. The validity of the Gaussianity assumption and accuracy of the UKF can

be assessed by comparing UKF estimates with estimates yielded by a particle filter, known to yield

the true posterior pdf if enough particles are used for the approximation.
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Chapter 3

Generalization of nonlinear Kalman filters

to non-Gaussian distributions

3.1 Nonlinear Kalman filtering

3.1.1 Kalman filtering recursions in the Gaussian setting

In particle filtering, a possibly large amount of particles are propagated in time and weighted

using Bayes’ theorem, yielding an exact algorithm with a high computational complexity. On

the contrary, nonlinear Kalman filters make a Gaussianity assumption on the posterior pdfs, thus

only the mean and covariance of the pdfs must be inferred, which greatly simplifies the filtering

equations Eq. 1.4.

As explained in chapter 1, during the measurement update step (Eq. (1.4b)) of the filtering

scheme, one makes use of Bayes’ theorem to condition upon the new measurement yk. If a Gaus-

sianity assumption is used for the pdfs, this update step can be written in closed form using proper-

ties of the Gaussian distribution, more specifically the closure under conditioning property, leading

to the well-known Kalman filter update equations (Eqs. (3.2b) and (3.2c)). More explicitly, in
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Gaussian Kalman filtering the distributions

p(xk,yk|y1:k−1) (3.1a)

p(xk|y1:k) (3.1b)

are all assumed to be Gaussian. At time step k−1 the state is represented by a Gaussian distribution

with mean xk−1|k−1 and covariance Pk−1|k−1. Each recursion of the nonlinear Gaussian Kalman

filter (i.e., equations 1.4 in the filtering formulation) can then be written as:

• Start with posterior from time step k−1:

xk−1|y1:k−1 ∼N
(
·;xk−1|k−1,Pk−1|k−1

)
• Prediction step at time step k: infer the moments of the prior pdf p(xk|y1:k−1)

xk|k−1 = E [xk|y1:k−1] (3.2a)

Pk|k−1 =Cov(xk|y1:k−1)

• Update step at time step k: infer the moments of the posterior pdf p(xk|y1:k) as

xk|k = xk|k−1 +Kk(yk− yk|k−1) (3.2b)

Pk|k = Pk|k−1−KkSkKT
k

where:

yk|k−1 = E [yk|y1:k−1] ,

Sk =Cov(yk|y1:k−1) , (3.2c)

Ψk =Cov(xk,yk|y1:k−1) ,

Kk = ΨkS−1
k (Kalman gain)

where Cov(X) represents the covariance of random variable X , and Cov(X ,Z) the cross-

covariance between two jointly distributed RVs X and Z.
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In the Gaussian linear case (both f and h are linear, noise terms are Gaussian), the Gaussian as-

sumption is exact since linear transformations preserve Gaussianity, thus the well-known Kalman

filter equations yield the true posterior distributions in closed form. However in general, the prop-

agation and observation equations f and h are not linear, thus the pdfs in Eqs. (3.1) are not truly

Gaussian and cannot be computed in closed-form. The second approximation used in nonlinear

Kalman filtering is then to estimate the first and second order moments of those pdfs and build

a Gaussian approximation using those moments. Three main methods exist to approximate those

moments (depicted in the same order on Fig. 3.1):

• Monte Carlo approximation (which yields the ensemble Kalman filter EnKF, where particles

are propagated and updated using the Kalman gain Kk =Cov(xk,yk|y1:k−1)Cov(yk,yk|y1:k−1),

where the covariance terms are computed as sample covariances over the particles, see e.g.

[Gillijns et al., 2006, Roth et al., 2015] for an introduction),

• linearization using Taylor Series (TS) expansion (yields the extended Kalman filter EKF),

• the unscented transform (yields the unscented Kalman filter UKF).

The UKF usually shows a good trade off between accuracy and computational time. We review

more explicitly its order of accuracy in the following section.

3.1.2 Approximating the moments of a random variable with the unscented

transform

Moment propagation in the KF recursions

From the formulation in Eqs. (3.2) one can see that the KF recursions require estimation of the

mean and covariance of p(xk,yk|y1:k−1). With the system described by Eq. (1.1) with noise prop-
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erties as in Eqs. (1.2), one can show using the Markovian properties of the system:

p(xk|y1:k−1) =
∫relates to process equation f︷ ︸︸ ︷

p(xk|xk−1) p(xk−1|y1:k−1)︸ ︷︷ ︸
posterior at step k-1

dxk−1 (3.3a)

p(yk|y1:k−1) =
∫relates to measurement equation h︷ ︸︸ ︷

p(yk|xk) p(xk|y1:k−1)︸ ︷︷ ︸
prior at step k

dxk (3.3b)

So in the prediction step, the posterior at time step k−1 xk−1|y1:k−1 undergoes the transformation

f to output the new random variable (RV) xk|y1:k−1, i.e. the prior at time step k. In the update step,

one computes the pdf of the posterior xk|y1:k as the conditional probability of the prior xk|y1:k−1

knowing the actual measurement yk. This requires knowledge of the distribution of yk|y1:k−1,

obtained by transformation of the RV xk|y1:k−1 through h, possibly nonlinear. Thus for both the

propagation and update steps, we are looking for the pdf, or moments, of a RV that undergoes a

transformation. In the following, we will consider an input RV X , which undergoes a potentially

nonlinear transformation g to output a new RV Z = g(X).

In linearization one tries to approximate the nonlinear function g through its Taylor Series

expansion, then uses this linear approximation to find the mean and covariance of the new random

variable Z (leads to the EKF). The unscented transform (UT) [Julier and Uhlmann, 1996] on the

contrary estimates directly the mean and covariance of Z using a set of transformed points (see

Fig. 3.1 for a schematic representation of linearization vs. UT, adapted from [Wan and van der

Merwe, 2000]). Those sigma points are deterministically chosen so that some of their moments

match those of the input RV X . Then those points are transformed using g, and the statistics of the

new random variable Z are computed using weighted averages over the transformed set of points.

The accuracy of the UT depends on how many moments of the input RV X are captured by the

sigma points set.
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Figure 3.2: Influence of higher order moments of the input RV X on the covariance of the output
RV Z = g(X) = X2; the plot shows the pdfs of the input RV X (three pdfs that exhibit different
3rd and 4th order moments); the table shows the true value of the mean and variance of the output
RV Z, computed exactly using Eqs. (3.4), the mean value is the same in all 3 cases, however the
covariance changes drastically depending on higher order moments of the distribution of the input
RV X .

Sigma point set Nsig accuracy/comments

Simplex set [Julier,
2003, Julier and
Uhlmann, 2002]

nX +2

captures the mean and covariance of the input RV, no assumption is made on
higher order moments, thus it is accurate to the second order for computation

of the mean of the output RV, and to the first order for its covariance (see
discussion in section 3.1.2).

Symmetric set [Julier
and Uhlmann, 1997]

2nX +1

captures the mean and covariance of the input RV, the 3rd order for a
symmetric distribution, and minimize the error on the marginal 4th order
moments of a Gaussian RV (if parameter κ = 3−nX ). It yields 2nd order

accuracy for the mean, 1st order accuracy for the covariance.

4th order Gaussian,
[Julier and Uhlmann,

1997]
2n2

X +1
captures up to the 4th order moments of a Gaussian input RV, thus it is
accurate to the second order for the computation of both the mean and

covariance of the output RV (only if the input RV is Gaussian!).

A note on scaling: because of possible issues that can appear in high dimensions with certain sets of points,
[Julier, 2002] presents a scaling transformation to minimize the effect of high order terms in high dimensions
and incorporate partial information about the 4th order terms. This transformation was initially applied to the
simplex set but is very often used on the symmetric set of points. Roughly, scaling transforms a set of points

X (i) as:
X (i)

scaled = X (0)+α(X (i)−X (0))
If parameter α is small, higher order moments E [(X−E [X ])n], n≥ 3 become close to 0. An additional
parameter β is introduced to reduce error on the kurtosis; β = 2 is optimal for a Gaussian distribution.

Table 3.1: Description and discussion on accuracy of different sigma points sets to be used in the
UT. The sets are plotted on Fig. 3.3.
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Figure 3.3: Location of sigma points for a Gaussian input RV X , comparison of different sigma
point sets described in Table 3.1.

Theoretical aspects: influence of higher order moments

For any function g, the second order approximations of the mean and covariance of Z = g(X) can

be written as (in the univariate case, following for instance [Ang and Tang, 2007]):

E [Z]' g(µX)+
1
2

σ
2
X

d2g
dX2 (3.4a)

Var(Z)' σ
2
X

(
dg
dX

)2

− 1
4

σ
2
X

(
d2g
dX2

)2

+E
[
(X−µX)

3] dg
dX

d2g
dX2 +

1
4

E
[
(X−µX)

4]( d2g
dX2

)2

(3.4b)

These are second order approximations in the sense that they keep only terms that contain up to the

second order derivatives of g. We can observe that the second order approximation of the variance

Var(Z) involves higher order (third and fourth) moments of the input RV X . Fig. 3.2 gives a sense

of how much higher order moments of X influence the covariance of the output RV Z with a simple

example.

Going back to the UT, a set of sigma points is chosen to match some of the moments of X .

Several sigma point sets have been derived in the literature. It is shown in [Julier, 2003, Julier and

Uhlmann, 2002] that Nsig = nX + 2 points (where nX is the dimension of the state vector X) are
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enough to capture the first and second order moments of the input RV X . Thus this set achieves a

second order accuracy on the mean (Eq. (3.4a)), but only a first order accuracy on the covariance,

since third and fourth order moments of X are not matched (it does not achieve Eq. (3.4b)). Other

sigma points sets, like the widely used symmetric set [Julier and Uhlmann, 1996] or the fourth

order set [Julier and Uhlmann, 1997] differ on how they account for higher order moments of the

input RV X , and will lead to different accuracy on the estimated moments of the output RV Z. In

[Julier, 2002], a scaling transformation is derived that leads to a new way to take into account third

and higher order moments. Table 3.1 summarizes these sigma points sets and their accuracy.

Two examples

The moment propagation schemes previously described differ in the accuracy of the mean and

covariance calculation. We will explain this more precisely in two examples.

Example 1. A quadratic transformation. In [Julier and Uhlmann, 1996] the example of a

univariate RV X ∼N (·;m,P) that undergoes the quadratic transformation g(X)=X2 is considered.

It is shown that the UKF with a symmetric set of sigma points leads to accurate results on both

the mean and covariance, contrary to the first order EKF. In [Gustafsson and Hendeby, 2012], a

similar example is considered where a nX -dimensional RV X ∼N (·;0, I) undergoes the quadratic

transformation g(X) = XT X . We consider here X in dimensions 2 and 3 and look at the estimates

obtained with the UT using different sigma point sets. Table (3.2) shows that only the second order

Taylor series and the fourth order UT yield correct results on both mean and covariance in both

cases (nX = 2,3). This was expected since we have already mentioned that the UT using either the

simplex set or the symmetric set, scaled or not, yield estimates with only first order accuracy on

the covariance. Since here g is quadratic, one needs a second order accuracy to output the accurate

results for the covariance.

Example 2. Highly nonlinear transformation of a bivariate random variable. The sec-
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nX = 2 nX = 3
mean variance mean variance

true values 2 4 3 6

first order Taylor Series 0 7 0 7 0 7 0 7
second order Taylor Series 2 3 4 3 3 3 6 3

UT spherical simplex (Nsig = nX +2, w0 = 0.5) 2 3 4 3 3 3 9 7
UT spherical simplex, scaled (Nsig = nX +2, w0 = 0.5, α = 1e−3, β = 2) 2 3 8 7 3 3 18 7

UT symmetric set (Nsig = 2nX +1, κ = 3−nX ) 2 3 2 7 3 3 0 7
UT symmetric set, scaled (Nsig = 2nX +1, κ = 0, α = 1e−3, β = 2) 2 3 8 7 3 3 18 7

UT 4th order (Nsig = 2n2
X +1, κ = 0, α = 1e−3, β = 2) 2 3 4 3 3 3 6 3

Table 3.2: Comparison of different methods to estimate mean and variance of the output RV
Z =XT X , with X ∼N (·;0, I) (example 1). Since g is quadratic, only the second order Taylor series
and the 4th order UT, which both captures up to 4th order moments of a Gaussian, are accuracte
in estimating the covariance of Z. Other sigma point sets are accurate only for estimation of the
mean.

ond example presented here consists of a 2-dimensional variable X =

{
X1

X2

}
that undergoes the

following nonlinear transformation:

g(X) =

{
g1(X1,X2)

g2(X1,X2)

}
=

{
8X2

X1−2 |X1| |X2|3−1 X2−1X1 |X2|3

}
=

{
Z1

Z2

}
(3.5)

This function is typical of a hysteretic system with Bouc-Wen model of hysteresis (X1 ← ẋ and

X2← r). It is non-differentiable at X1 = 0 and X2 = 0. Fig. 3.4 shows the mean and covariance of

the output RV Z. Both the symmetric set (not scaled) and the fourth order sets perform well. The

scaled symmetric set (2nX + 1 points) and the scaled simplex set (nX + 2 points) perform exactly

the same. This can be expected since scaling (with small α , 10−3 here) reduces the influence of

third and higher order moments (i.e., it sets the higher order moments of X to 0). Thus we expect

the same behavior from any scaled set of points (with small α), regardless of how many points it

contains (as long as it still matches the mean and covariance of X).
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3.1.3 The UKF for uncertainty quantification

We have seen that in theory, the same order of accuracy is not as easily achieved for the estimation

of the covariance as for the estimation of the mean when using the UT for propagation of moments,

which might in turn affect the behavior of the UKF. This issue is not usually tackled in the literature

since no true paths are easily available for assessing the estimation performance of the covariance.

Furthermore, values for the covariance are usually of less interest. For SHM purposes however,

Figure 3.4: Computation of mean and covariance of a transformed bivariate random variable (ex-
ample 2). Comparison between Taylor Series linearizations, and several unscented sigma points
sets. The ”true” covariance was obtained by MC simulation. All methods perform well in recov-
ering the variance of Z1 = g1(X) = 8X2. This seems logical since g1 is linear in this case, and
all methods are known to perform well for linear functions. On the contrary, for estimation of
var(Z2) and cov(Z1,Z2), where Z2 = g2(X) and g2 is highly nonlinear, the TS1 and unscaled sim-
plex methods perform poorly. Scaled transformations, both with the symmetric set and the simplex
set, perform exactly the same. The unscaled symmetric set and the 4th order sets perform the best
in this case.
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knowledge about the covariance can be of crucial interest since it enables the user to quantify

uncertainty on the states/parameters, and thus on the presence of damage, which would further

allow one to integrate these techniques in more reliable probabilistic decision-making tools, as

presented in the motivating example of chapter 1.

In the following section we will look at 3 different single degree-of-freedom (SDOF) systems,

with different nonlinearities, that are relevant in the context of structural systems. We assess per-

formance of the covariance estimates by comparing results from UKFs to results from particle filter

schemes, known to give an estimation of the true posterior pdf as np→ ∞.

3.2 Assessment of UKF estimates for identifiable nonlinear sys-

tems

3.2.1 Analysis of covariance: methodology

For each problem we run a PF along with several UKFs, using different sigma point sets. As

previously stated, the particle filter yields at each time step k the true posterior pdf, thus the true

mean and covariance of p(xk|y1:k), with the condition that np → ∞. Since this is not achievable

in practice, we decided here to run the PF several times with a large number of particles, then to

present statistics of the results. More precisely, for each run of the PF, using np particles, we can

compute at each time step k the moments of the posterior pdf p(xk|y1:k) as approximations over

particles {x(i)k ,w(i)
k }i=1:np . For instance for the mean and covariance:

E [xk|y1:k] =
np

∑
i=1

w(i)
k x(i)k (3.6a)

Cov(xk|y1:k) =
np

∑
i=1

w(i)
k (x(i)k −E [xk|y1:k])(x

(i)
k −E [xk|y1:k])

T (3.6b)
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This gives an approximation of mean and covariance over one run of the PF. Performing R runs we

can take statistics of each quantity, i.e.

E [q] =
1
R

R

∑
r=1

q(r) and Std(q) =

√
1

R−1

R

∑
r=1

(q(r)−E [q])2 (3.6c)

where q is any scalar quantity (in our numerical examples we look at mean, standard deviation std.

dev., skewness parameter and kurtosis of the marginal pdfs of the states/parameters, respectively

noted E[·],σ(·),γ1(·),Kurt(·) in the plots.) q(r) is a realization of this quantity obtained at the r-th

run of the PF, and we plot for each quantity of interest a shaded area for the intervals

[E [q]−Std(q),E [q]+Std(q)] (3.6d)

We then expect the true value of the quantity to be contained inside this interval (i.e., inside the

shaded area in the plots). In this way we take into account the uncertainty inherently present with

a PF, since we don’t have an infinite number of particles.

For the UKF, it directly outputs mean and covariance of the state that can be directly plotted

along with the results of the PF. The idea here is to compare those results with the ones given

by the PF to see if the Gaussianity assumption leads to correct results on both the mean and the

covariance.

3.2.2 Single-degree-of-freedom examples: results and discussion

We study in this section three SDOF mechanical systems that present different types of nonlinear-

ities in both the propagation and measurement equations:

• a pendulum,

• a Duffing oscillator,

• a Bouc-Wen model of hysteresis.

For each case, the actual noise added to the synthetic data is Gaussian and additive, usually 10%

root-mean-square (RMS), and the prior used for all algorithms is also Gaussian. Figures 3.5, 3.6
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and 3.7 present more precisely each system, its equations and filtering results for some chosen

states and/or parameters. For all three problems, the system is observable and parameters are

identifiable, i.e., states/parameters can be theoretically identified from a series of measurements in

the absence of noise/uncertainties. We then study the ability of filtering algorithms to 1) accurately

estimate the states and parameters and 2) take into account and quantify uncertainties.

Several general conclusions can be drawn from these three examples. Looking at results from

the PF (up to fourth order moments, see Figs. 3.6b, 3.7b, 3.7c), it looks like after convergence of

the parameters, the posterior pdfs are actually very close to Gaussian. As a consequence it is not

surprising to see that the UKF usually performs very well, after convergence of the parameters is

achieved. In particular the UKF with the symmetric point set performs very well in estimating the

true value of the parameter, and in recovering both the mean and covariance of the states. However

before convergence of the parameters is achieved, a clear discrepancy is observed between results

of the particle filter and the UKFs regarding the variance of the states/parameters, which also coin-

cides with values of the higher order moments that do not match those of a Gaussian distribution.

This can be very well explained by the theory previously studied (variance depends on higher order

moments, thus if the Gaussian approximation is not correct, the output covariance from the UKF

will be inaccurate).

Regarding comparison of the different sigma point sets, the unscaled symmetric set (2nX + 1

points) and fourth order set (2n2
X +1 points) perform in a very similar fashion (see Fig. 3.6b), thus

there is probably no need to use the higher order set. The scaled simplex set (nX +2 points) usually

performs well, but it still looks less robust since it is shown to sometimes fail while the unscaled

symmetric set performed well, regardless of the chosen prior. And finally, we observe again that

the scaled symmetric and scaled simplex sets (with scaling parameters α small, ' 10−3) output

the exact same results. This was also expected, since scaling reduce higher order moments of the

input RX X to 0, regardless of the number of points in the set.
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Specific comments on Fig. 3.5. Values used were np = 8000 particles to run the generic boot-

strap PF, averaged over R = 10 runs. For this example the shaded area is very narrow, implying

that each run of the PF yields very consistent estimates of the quantities of interest, that fit well

the true path (parameter is well identified). Regarding the UKFs, except for the simplex set that

behaves poorly, all the UKFs perform well since they are able to recover the expected value and

covariance (slightly overestimated) of the true posterior pdf, given by the PF.

Specific comments on Fig. 3.6. At the beginning of the filtering process, before convergence is

achieved, results of the PF clearly shows higher order moments (third and fourth) that differ from

moments of a Gaussian distribution. At the same time UKF algorithms do not give estimates of the

mean and the covariance in accordance with results from the PF, which yields the true pdf. For two

algorithms, namely the sigma point set (unscaled) and the fourth order set (here the principle of

marginalization is applied to run this fourth order set, see section 4.3.1 in the following chapter),

this does not influence convergence, however for the simplex set and the scaled unscented set,

convergence to the true value is not achieved. For the two algorithms that achieve convergence,

the estimate of the covariance at convergence is in agreement with the estimate given by the PF. It

has to be noted that behavior of the UKFs depend on the prior chosen for the states/parameters: in

some cases all UKFs yield good results. The symmetric, unscaled, UKF set seems to be the most

robust (in the sense that it very rarely fails).

Specific comments on Fig. 3.7. The hysteresis variable shows higher values for the third and

fourth order moments at the beginning of the time series than the velocity state, indicating that

its pdf is quite non-Gaussian. Again, when the Gaussianity assumption does not hold, large dis-

crepancies between the variance estimates from the PF and the UKFs can be observed. However,

after some time the pdf tends toward Gaussianity and all UKFs are capable of recovering mean and

covariance of the pdf of the states. Same conclusions for the static parameters.
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Static parameter to identify: ߠ = .ܮ
State-space formulation for filters:

State vector: ݔ௞ = ܮሶߙߙ ௞
Propagation equation: 

ଷ,௞ݔଶ,௞ݔଵ,௞ݔ = ଵ,௞ିଵݔ + ݐ݀ · ଶ,௞ିଵݔଶ,௞ିଵݔ − ݐ݀ · ௚௫య,ೖషభ sin ଵ,௞ିଵݔ + ݐ݀ · ݁௞ݔଷ,௞ିଵ
Measurement equation: ݕ௠,௞ = (ଵ,௞ݔ)	ଷ,௞sinݔ

ሷߙ (ݐ) + ܮ݃ sin	((ݐ)ߙ) = :Equation of motion(ݐ)݁

ambient vibrations
e ݐ = ܰ(0, (௖ݍ

g

(ݐ)ߙ
ܮ

࢓࢟ = (ࢻ)	ܖܑܛۺ
(a) System #1: SDOF pendulum, example adapted from [Särkkä, 2013]

(b) Evolution in time of mean and std. dev. of p(α̇k|y1:k) (filtering of angular velocity α̇)

(c) Evolution in time of mean and std. dev. of p(L|y1:k) (filtering of static parameter θ = L)

Figure 3.5: Comparison of estimates (mean and std. dev.) from UKFs and PF schemes for the
pendulum system.
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m
c݇௟௜௡ ݀(t)࢟ ࢚ = ሷࢊ ࢚ + (࢚)ࢍࢇ

Duffing oscillator

ܽ௚(ݐ)
α Equation of motion:݉ ሷ݀ + ܿ ሶ݀ + ݇௟௜௡݀ + ଷ݀ߙ = −݉ܽ௚

State vector = ݀ ሶ݀ ݇௟௜௡ ܿ ߙ ்݉ = 1 is known

(a) System #2: SDOF Duffing oscillator

(b) Evolution in time of the moments (expectation, std. dev., skewness, kurtosis) of the posterior pdf
p(klin|y1:k) of the linear stiffness parameter

Figure 3.6: Comparison of estimates (1st to 4th order moments) from UKFs and PF schemes for
the SDOF Duffing system.
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m
c

k ݀(t)࢟૚ ࢚ = ሷࢊ ࢚ + ૛࢟(࢚)ࢍࢇ ࢚ = 	(࢚)ࢊ

Bouc-Wen model 
of  hysteresis

ܽ௚(ݐ)
Equations of motion:݉ ሷ݀ + ܿ ሶ݀ + ݇݀ = −݉ܽ௚ݎሶ = ሶ݀ − ߚ ሶ݀ ݎ ௡ିଵ − ߛ ሶ݀ ݎ ௡
State vector ݔ௞ = ݀ ሶ݀ ݎ ݇ ܿ ߚ ்݉ = 1, ݊ = 3 and ߛ = 0 are known

(a) System #3: SDOF Bouc-Wen model of hysteresis

(b) Evolution in time of moments (mean, std. dev., kurtosis) of p(rk|y1:k) (filtering of the highly nonlinear
hysteresis variable r)...

(c) ... and of p
(
ḋk|y1:k

)
(filtering of the velocity ḋ)

Figure 3.7: Comparison of moment estimates from UKFs and PF schemes for the SDOF Bouc
Wen model of hysteresis system.
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3.2.3 Increasing the dimension of the system

In the previous section, small scale systems were studied in order to enable running a particle filter

and thus obtain the true posterior pdf of the states/parameters. In this section, we show that the UKF

is indeed capable of handling a much larger system, for which the particle filter would be much too

cumbersome to run. The chosen system is a 30-DOF structure with 7 nonlinearities (one Bouc-Wen

model of hysteresis and 6 Duffing oscillators throughout the height of the structure), schematically

represented in Fig. 3.8a. Measurements (displacements or accelerations) are available from all

floors, thus rendering the system identifiable. Fig. 3.8b shows filtering of some of the states

(top row) and evolution in time of the error between the posterior mean and the true value of the

parameters (second row), demonstrating that the UKF still yields very acceptable results when the

dimension of the system is largely augmented. Running a UKF on this 30-DOF system, which

includes 61 dynamic states and 68 static parameters, takes about 18 minutes on a work computer,

thus enabling efficient damage assessment of such a structure after a large amplitude event for

instance.

3.3 Influence of noise

3.3.1 What happens when the true noise is non-Gaussian?

All the examples considered previously used additive Gaussian noise, however in real-life systems

this might not be the case. Sensors might be broken, and more importantly many excitations, which

cannot be directly measured, could not be represented as Gaussian noise.

Revisiting system #2 (Fig. 3.6), but now considering the case where the noise added to the

simulated data is corrupted by outliers and can be described as follows (as done in [Roth et al.,
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cn-1
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k2

c3
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α

Bouc-Wen model of 
hysteresis,

hysteretic state ࢘૚
parameters β, n

Duffing 
oscillator

݉௡ିଶ ݉௡ିଵ ݉௡݉ଷ݉ଵ ݉ଶ

ሻݐଵሺܨ ሻݐଶሺܨ ሻݐଷሺܨ ሻݐ௡ିଶሺܨ ሻݐ௡ିଵሺܨ ሻݐ௡ሺܨ

ξଵሺݐሻ

Measurements
At each DOF  ,࢏			࢏࢟ ࢚ ൌ ࢏ࣈ ࢚ ሷࣈ	࢘࢕	 ࢏ ࢚

ξଶሺݐሻ ξଷሺݐሻ ξ௡ିଶሺݐሻ ξ௡ିଵሺݐሻ ξ௡ሺݐሻ

(a) Schematic representation of a n-DOF system

(b) Top row: filtering of some states (evolution in time of E
[
xdyn

y |y1:k

]
); bottom row: evolution in time of

the average error for some static parameters

Figure 3.8: Filtering of a 30-DOF identifiable system with a UKF

2013]):

νk ∼


N (·;0,25Qexc) with probability 10%

N (·;0,Qexc) with probability 90%
(3.7a)
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for the noise added to the excitation, and

ηk ∼


N (·;0,25Rmeas) with probability 10%

N (·;0,Rmeas) with probability 90%
(3.7b)

for the measurement noise, with Qexc and Rmeas the covariance of the noise added to the excita-

tion and the measurement time histories in the previous example (10% RMS, Gaussian). Adding

outliers will result in noise that show higher order moments than those of a Gaussian distribution,

especially higher fourth order moments (kurtosis). Eqs. (3.7) actually represent mixtures of Gaus-

sians, thus the variance and fourth order moments of these two noise distributions can be computed

exactly.

In this experiment, we added noise as described in Eqs. (3.7) to the true data, then we tried to

solve this problem with both the PF (the Gaussian mixture noise is taken into account through the

use of an indicator value that determines which mixture to consider for each particle, see [Särkkä,

2013]) and the UKF. Fig. 3.9a shows the true moments (PF) of the velocity ḋk|y1:k, as well as the

behavior of the UKF when the unscaled symmetric set, is used. First we can observe that even at

convergence, the posterior of state ḋ is not exactly Gaussian anymore, since the normalized fourth

order moments are (slightly) higher than 3. Regarding performance of the UKF, if the covariance

parameters Q and R of the filtering algorithm are chosen as the true covariance of the noise added

to the data, the UKF fails (green curve: the expected value does not match the true path, because

the parameters do not converge to their true value). This is because the algorithm is unable to

process the higher order moments present in the noise/state. A well-known trick in that case is to

increase the covariance of the noise. Here we gradually augment both Q and R; we can see that

we need to augment Q and R by 17% (pink line) to obtain convergence to the true values/path.

However using these parameters, the covariance of the state is overestimated, more so if we go on

increasing Q and R (black line).
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(a) Filtering of velocity ḋ with a generic UKF, when noise added to the data has outliers

(b) Filtering of the velocity ḋ and ...

(c) ... the static parameter α (nonlinear stiffness) when the new sigma point set that takes into account higher
order moments of the noise is used in the UKF.

Figure 3.9: Filtering of some states/parameters when noise has outliers: using a generic sigma
point set for the noise vs. using a sigma point set that captures higher kurtosis of the noise terms.
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3.3.2 A new sigma point set to take into account higher order moments of

the noise

We derive in this section a new sigma point set that enables one to take into account higher fourth

order moments of the noise, assuming that these statistics are known. In the generic UT, the

parameter κ is used to tune the fourth order moments of the sigma point set to a Gaussian pdf (0

excess kurtosis). The main idea here is to use three different values of κ: one for the state that is

still assumed to be Gaussian, thus the linear Kalman filter update can be used, and one for each of

the noise terms, which can show different kurtosis behavior.

We use in this section the augmented version of the UKF, as presented in [Wan and van der

Merwe, 2000], i.e. we augment the state vector with the noise terms and we consider that f and h

are functions of the dynamic states, the static parameters and the noise terms:

xk = f (xk−1,ek,νk) (propagation equation) (3.8a)

yk = h(xk,ηk) (observation equation) (3.8b)

Thus the noise need not be additive anymore, however we still keep the assumptions described in

Eq. (1.2), especially νk and ηk are uncorrelated to each other and uncorrelated to the states/parameters

at each time step.

The dimension of the augmented state is now naug = nx+nv+nη . The mean and covariance of

the augmented state are x̄aug and Paug respectively. Now consider a set of Nsig = 2naug + 1 sigma

points X (i) and their respective weights W (i) defined as follows:

X (0) = x̄aug, W (0), (3.9a)

X (i,naug+i) = x̄aug±
√

naug +κ1
√

Paugi, W (1), for i = 1 : nx, (3.9b)

X (nx+i,naug+nx+i) = x̄aug±
√

naug +κ2
√

Paugi, W (2), for i = 1 : nv, (3.9c)

X (nx+nv+i,naug+nx+nv+i) = x̄aug±
√

naug +κ3
√

Paugi, W (3), for i = 1 : nη (3.9d)
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where
√

Paug is such that
√

Paug
√

Paug
T
= Paug and

√
Paugi is the ith column of

√
Paug. We want

this set to capture the mean and covariance of the augmented state, which can be written as:

Nsig

∑
l=1

W (l)X (l) = x̄aug =

xk|k

0
0

 (3.10a)

Nsig

∑
l=1

W (l)(X (l)− x̄aug)(X (l)− x̄aug)
T = Paug =

Pk|k 0 0
0 Q 0
0 0 R

 (3.10b)

which gives the following constraints over the weights:

W (0) = 1− nx

naug +κ1
− nv

naug +κ2
−

nη

naug +κ3
(3.11a)

W (1) =
1

2(naug +κ1)
,W (2) =

1
2(naug +κ2)

,W (3) =
1

2(naug +κ3)
(3.11b)

To find the value of the κ1,2,3, we use information on the fourth order moment of the state x and the

noise terms v,η . Higher order unscented transforms have been derived in the literature (e.g., [Liu

et al., 2014, Ponomareva et al., 2010, Tenne and Singh, 2003]) that consider higher order moments

of the marginal distributions, and sometimes an average over all dimensions. However there exist

other measures of multivariate kurtosis that are widely used for hypothesis testing (Gaussian testing

of a data set), and take into account, to a certain extent, correlation between dimensions in the

definition of the kurtosis parameter. One widely known measure of kurtosis for a d-variate vector

X with mean E [X ] and covariance Σ is defined in [Mardia, 1970] as:

β2,M = E
[
{(X−E [X ])T

Σ
−1(X−E [X ])}2] (3.12)

which equals to d(d + 2) if X is Gaussian. We then compute the values of κ1,2,3 so that the set

of sigma points captures the value of β2,M, assumed known, for the states, the process noise and

the measurement noise separately. For the states, we assume its posterior pdf will be Gaussian,

so β2,M(X) = nx(nx +2). For the noise vectors, β2,M is assumed known (if the pdf of the noise is

known it can be computed exactly, or it should be approximated somehow). The value of β2,M, as
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well as the values of Q and R, can vary with time. Using the fact that the states and noise terms are

uncorrelated, one can uncouple computations of the three κ parameters. More precisely, κ1,2,3 are

computed using the following equations:

(naug +κ1)
nx

∑
i=1
{
√

Px
T
i P−1

x
√

Pxi}2 = β2,M(x) = nx(nx +2) (3.13a)

(naug +κ2)
nv

∑
i=1
{
√

Q
T
i Q−1

√
Qi}

2 = β2,M(v) (3.13b)

(naug +κ3)
nη

∑
i=1
{
√

R
T
i R−1

√
Ri}2 = β2,M(η) (3.13c)

Another possibility is to use the measure of multivariate kurtosis defined in [Srivastava, 1984],

by:

β2,S =
1
d

d

∑
i=1

E
[
(Yi−θi)

4]
λ 2

i
(3.14)

where Yi, θi are the projections of X and E [X ] on the ith eigenvector of Σ = cov(X), and λi the

corresponding eigenvalue. For a Gaussian RV X , β2,S = 3. One can also derive a set of sigma

points based on this measure of kurtosis: sigma points defined in Eqs. (3.9) and weights defined in

Eqs. (3.11) remain the same, but Eq. (3.14) is used to compute κ1,2,3. This involves a projection

onto the eigenvectors of the covariance matrix Paug, which can be more easily obtained if
√

Paug is

defined using the eigenvalue decomposition of Paug, instead of the usual Cholesky decomposition

usually used in the UKF.

Results using this new set of points for system #2 with outliers in the noise are shown in Figs.

3.9b and 3.9c. We can see that this new set of points yields more accurate estimates of the variance

of both the static and the dynamic states.

It is important to highlight here that such a sigma point set can handle only a simplified measure

of multivariate kurtosis of the noise, the Gaussian assumption on the states must be conserved in

order to use the linear Kalman filtering equations. This assumption might be inappropriate if the

noise is more complex and the functions f and h highly nonlinear. In the following, we present a
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novel framework to derive nonlinear Kalman filters that can handle more complex distributions for

both the noise and the states.

3.4 A framework to derive higher order nonlinear Kalman fil-

ter schemes

The previous sections highlighted some of the limitations of both the UKF and the PF. On one hand,

the UKF makes a Gaussianity assumption for the state, which has two drawbacks: 1) one cannot

estimate higher order moments of the posterior pdf and 2) this assumption can lead to inaccurate

estimates of the covariance for highly nonlinear non Gaussian systems. On the other hand the PF is,

theoretically, capable of handling higher order moments, however a very large number of particles

is required if one wants to obtain accurate estimates of the moments (large sampling variance).

In this section we present a framework that would enable one to derive higher order Kalman

filter algorithms. The main idea is to propagate and update the parameters of a distribution in a

similar fashion as done with the Gaussian distribution in the UKF. This distribution can be chosen

so that its higher order moments can vary and be propagated/updated consistently at each time step.

As will be explained in more detail later, this requires both a moment propagation scheme (UT for

instance) that propagates higher order moments through nonlinear transformations, as well as a

measurement update set of equations that updates higher order moments. In this fashion one could

have access to higher order moments of the posterior pdfs and handle more complex non-Gaussian

noise, while avoiding the sampling variance issue observed when using particle approximations of

the pdfs.

3.4.1 Kalman filtering using non-Gaussian probability distributions

As previously mentioned, Gaussian Kalman filter type algorithms make two approximations:
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• use an approximation (MC, linearization, or UT) to estimate the moments of RVs that un-

dergo nonlinear transformations,

• assume Gaussianity of the pdfs, and thus use the linear Kalman filter measurement update

equations.

Lately, research has focused on two possible improvements of the Kalman filter schemes:

higher order sigma point sets for the UKF, and the derivation of linear Kalman filters that assume

a different underlying distribution than the Gaussian one.

Higher order UKFs

The unscented transform can be used to capture moments of a non Gaussian RV, for example non

zero skewness terms, as presented in [Julier, 1998]. However when this sigma point set was in-

serted in a UKF, results did not show much improvements from a typical UKF with a symmetric

point set. The authors explained that this could be partially due to the linear measurement update.

Indeed the measurement update equations are linear and strictly involve mean and covariance of

the RV, thus higher order moments are not used and propagated during the measurement update.

In [Liu et al., 2014] this problem is tackled by propagating the higher order moments through a re-

cursive estimation model consistent with the optimal Kalman filtering framework. However, from

a Bayesian estimation perspective, the linear measurement update was derived using a Gaussian

assumption for the RVs, thus using it to propagate higher order moments (which are fixed in a

Gaussian distribution) shows a kind of contradiction in the method.

The method we propose instead is to combine higher order unscented transforms (or Monte

Carlo approximations) with update equations that propagate higher order moments; in this way the

higher order statistics are taken into account consistently at each step of the algorithm.
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Linear filters that make use of a different probability distribution

To present filters that use different underlying distributions than the Gaussian one, it is easier to

start with linear filters. Indeed, using the same (Bayesian) reasoning as for the Gaussian Kalman

filter, one can derive linear filters using different distributions than the Gaussian one, as long as

these distributions possess the three following properties:

• closure under linear transformation (and closure under marginalization), to propagate the

distribution through linear f and h,

• closure under conditioning, to derive measurement update equations,

• closure under addition of independent RVs in this family (if the noise is additive), or more

generally closure under joint distribution of independent RVs in this family, to incorporate

noise terms in the equations.

Again, the closure under conditioning enables one to write the measurement update equations, i.e.,

compute the distribution of p(xk|y1:k) knowing the joint pdf p(xk,yk|y1:k−1) by conditioning upon

the measured value yk.

Using different distributions enables one to take into account different distributions for the

noise (skewed, higher kurtosis...), and/or a different prior distribution p(x0) to start the algorithm.

Two of these linear filters derived in the literature are:

• the t-Student linear filter,

• the closed skew normal (CSN) linear filter.

The linear t-student filter was derived in [Roth et al., 2013]. The multivariate t-student distribu-

tion is symmetric (skewness is zero), but it has one additional parameter νstud (compared to the

Gaussian distribution) which permits one to tune the kurtosis. However, the kurtosis should be

the same in all dimensions (excess kurtosis = 6
νstud−4 ), which might not be representative of many

multivariate distributions, especially if the dimensions represent different types of variables (static

parameters vs. dynamic states for instance). Furthermore, in the derivation of the filter, the noise
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distributions should also possess the same parameter νstud , and thus the same marginal kurtosis, as

the state vector, which again might be very restrictive.

Another linear filter was derived in [Naveau et al., 2005] using a closed-skew normal distri-

bution (CSN), which is an extension of the Gaussian distribution allowing for non-zero skewness.

It is parameterized by 5 vector/matrix parameters, which allows for different marginal third order

moments in different directions, as shown in Fig. 3.10b for a 2-dimensional CSN random variable.

Using the CSN distribution as the underlying distribution for the pdfs, one can derive a nonlin-

ear filter, using one of the three approximations previously mentioned for the Gaussian case. An

extension to nonlinear systems is presented in [Rezaie and Eidsvik, 2014] that uses a MC approx-

imation to propagate the system through a nonlinear process equation, however the measurement

equation h is linear, thus the linear filter update part can be used directly. In the following we

consider a nonlinear extension of this filter based on the unscented transform, and is capable of

handling both f and h nonlinear.

3.4.2 The unscented CSN filter

The closed skew normal distribution

Let’s consider a RV X ∈ RnX that follows a CSN distribution, i.e., X ∼CSNnX ,q(µ,Σ,Γ,ν ,∆). Its

pdf is written as follows:

p(X) =
[
Φq(0;ν ,∆+ΓΣΓ

T )
]−1

Φq(Γ(X−µ);ν ,∆)φn(X ; µ,Σ) (3.15)

where Φq and φq are the cdf and pdf respectively of the q-variate Gaussian distribution, µ ∈RnX×1,

Σ ∈ RnX×nX , Γ ∈ Rq×nX , ν ∈ Rq×1 and ∆ ∈ Rq×q, and q is a positive integer. The matrices Σ and

∆ should be symmetric, positive definite. For this distribution, µ and Σ do not equate to the mean

and covariance of the distribution. A CSN distribution with either q = 0 or Γ = 0 is Gaussian. For

derivation of properties, moment generating function etc, see for instance [González-Farı́as et al.,
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2004].

Moment matching with the CSN distribution

The moments of a distribution can be computed using the moment generating function (c.g.f.):

MX(s) =
Φq(ΓΣs;ν ,∆+ΓΣΓT )

Φq(0;ν ,∆+ΓΣΓT )
exp{sT

µ +
1
2

sT
Σs}, with s ∈ RnX (3.16)

Moments of a CSN distribution are difficult to compute in closed form, because there usually

exist no closed form expressions for φq, Φq or their respective derivatives, except for the cases

q = 1, q = 2.

In a nonlinear Kalman filter, one also needs to estimate the parameters of the distribution know-

ing its moments (moment matching). Contrary to the Gaussian distribution where moment match-

ing is trivial (µ = E [X ] and Σ = Cov(X)), moment matching in the CSN setting is difficult to

achieve (requires some kind of nonlinear optimization solver) since the relationship between pa-

rameters of the distribution and its moments is very complex, except for the case q = 1,ν = 0

(see appendix B.1). In the following example we restrict ourselves to CSN distributions with

q = 1,ν = 0 to simplify moment matching.

Sigma point set that captures up to the third order moment of a RV

In this section, we assume that the CSN distribution and the moments of an input RV X are known.

We want to find a sigma point set that captures up to the third order moments of X , and thus obtain

more accurate estimates of the moments of Z = g(X). We will see that depending on the type of

nonlinearity present in the function g, one might need to capture all skew terms of X (marginal

skew terms and cross skew terms), or use marginalization to capture some of them.

In [Julier, 1998], a set of points that captures the mean, covariance and skewness of a dis-

tribution is derived. It is composed of three shape sets, each of them capturing one skew term

E
[
X jX jX j

]
, E
[
X jX jXk

]
and E

[
X jXkXl

]
. Capturing those three terms becomes very cumbersome
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(a) Symmetric set vs. novel set that captures marginal skew

(b) Distribution of the input RV X (bivariate CSN), ob-
tained by MC sampling

(c) Comparison of several sigma point sets for a
cubic transformation g, the green line (best per-
formance) is obtained using a set that takes into
account cross-skew terms of X

Figure 3.10: Performance of several sigma point sets on estimating mean (cross marker), covari-
ance (contour line) and marginal skewness (diamond marker), for several transformations g of a
bivariate CSN X

if the state vector is large, many sigma points will be needed (Nsig scales with n3
X ). However one

can use a simplification of this set, where only the marginal skew term S j = E
[
X jX jX j

]
is captured

in each dimension, which requires only 2nX +1 sigma points, as for the symmetric set (using solely

the first shape set from [Julier, 1998]). A sigma point set that captures the known mean E [X ] = m,

covariance PXX , marginal skew terms SX , and minimize the error on the average kurtosis, is derived

in appendix C.1.
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Figure 3.10a shows results obtained with this new sigma point set, for two different nonlinear-

ities. In both cases g1 is linear in X (Z1 = X1 +X2), and g2 is nonlinear. For the left plot, Z2 = X2
2 ,

and we can see that our set performs better than the symmetric set in recovering the covariance

of the output set. Indeed looking at Fig. 3.10b, we can see that the input X2 is clearly skewed,

however the symmetric set does not take this into account, creating error in the estimation of the

output covariance. Our set however takes into account both skewness and kurtosis terms of the

input RV X , and thus outputs a more accurate estimate of the covariance. Also, first order accu-

racy is achieved in estimating the skew of Z, and it can be observed that again our estimate of the

skew (diamond shape) is better than the one obtained with a symmetric set. However, looking at

the right plot of Fig. 3.10a, it can be observed that for a nonlinearity of the type Z2 = X1X2 this

new set performs in the same way as the symmetric set. This is probably due to the fact that this

nonlinearity involves cross terms, and thus the cross skew terms of X should also be captured to

obtain accurate results.

The most straightforward way to catch all the skew terms of the input RV X would be to use the

full set presented in [Julier, 1998] (number of sigma points scales with n3
X ). However in systems

of interest for SHM, nonlinearities usually involve cross terms such as kx or cẋ, thus we mainly

want to catch cross skew terms involving multiplication of a state and a parameter. We then used

a different approach to bypass this problem, using marginalization of some states or parameters

(method adapted from [Morelande and Moran, 2007], see section 4.3.1 in the following chapter).

Fig. 3.10c shows results on a cubic transformation of the form

[
Z1

Z2

]
=

[
X1 +X2

X1X2
2

]
. We see in the

figure that this new method (in green) is more accurate than either the symmetric set of the simple

skew set in estimating the covariance of the output RV Z.
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The unscented CSN filter, additive noise case

In this section we present a nonlinear filter that aims at propagating the mean, covariance and

third order moments of a distribution, using as baseline pdf the CSN distribution. The noise is

assumed additive, however non-additive noise can also be considered as previously mentioned.

The algorithm would follow the following steps:

• Start with knowledge of the posterior pdf at time step k− 1, p(xk−1|y1:k−1) ∼ CSNnx,1(Θk−1),

and its moments

• Propagation step: estimate the prior pdf p(xk|y1:k−1)

– Compute sigma points that capture the mean, covariance and skewness of the input RV

xk−1|y1:k−1

– Propagate them through f

– Compute the moments (or cumulants) of the output RV f (xk−1|y1:k−1)

– Compute the moments of the prior pdf p( f (xk−1|y1:k−1)+νk−1), using additivity and inde-

pendence of the noise and thus additivity of the cumulants

• Update step: estimate the posterior pdf p(xk|y1:k)

– Compute sigma points that capture the mean, covariance and skewness of the input RV

xk|y1:k−1

– Propagate them through h

– Compute the moments (or cumulants) of the output RV h(xk−1|y1:k−1) and the cross-moments

between the input and output RVs

– Use the additive property of the measurement noise ηk to compute the moments of the joint

pdf p(xk,yk|y1:k−1) = p(xk|y1:k−1,h(xk|y1:k−1)+ηk)

– Fit a CSN (q = 1,2) distribution to the joint pdf p(xk,yk|y1:k−1) ∼ CSNnx+ny,q(Θxy), by

matching its mean, covariance and third order moments
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– Use the closure under conditioning property of the CSN distribution (see appendix B.2)

to condition upon the observed value yk and thus find the parameters Θk of the posterior

distribution p(xk|y1:k)∼CSNnx,q(Θk) as:

µk = µx +ΣxyΣ
−1
yy (yk−µy), (3.17a)

Σk = Σxx−ΣxyΣ
−1
yy Σyx, (3.17b)

Γk = Γx, (3.17c)

νk = ν− (Γy +ΓxΣxyΣ
−1
yy )(yk−µy), (3.17d)

∆k = ∆ (3.17e)

The steps followed in this algorithm are actually similar to the ones in the well-known Gaus-

sian unscented Kalman filter, with the main difference that third order moments are taken into

account, and the measurement updates equations are modified. However, two steps are much more

complicated to derive in this CSN framework (compared to the Gaussian framework):

1. compute a sigma point set that captures up to the third order moments of the input RV,

2. fit a CSN (q = 1,2) to the known moments of a RV.

Numerical example

We looked at one small dimensional problem to test our algorithm. The benchmark logistic maps

problem is modified to include skewed process and measurement noise with the following system

equations:

xk = (1− xk−1)xk−1θ +νk (3.18a)

yk = xk +ηk (3.18b)

where θ = 3.91 is a static parameter, νk is skewed (mean 0, variance 7 ·10−14, skewness parameter

γ1 = 0.6) and ηk is also skewed (mean 0, variance 8 · 10−5, skewness parameter γ1 = −0.9), and
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Figure 3.11: Inference of the dynamic state in a non Gaussian system: comparison of several
nonlinear Kalman filter algorithms.

are sampled from a CSN distribution when we generate simulated data.

Here we consider the simple case where θ is known and we are just following the behavior

of the state x. Results are shown in figure 3.11, where the normal UKF, the unscented CSN filter

and the ensemble GM filter (described in the next section, has higher order of accuracy) are com-

pared. We can observe that the unscented CSN filter and the higher order EnGM filter both behave

similarly in recovering the mean, variance and skewness parameter of the state, which shows that

the CSN indeed performs well in this case, and that accurately keeping track of the skewness in-

fluences learning of the covariance. One can observe though that at k ' 50, the skewness reaches

a relatively high value, and the CSN filter cannot approximate it correctly, showing that the CSN

distribution with q = 1,ν = 0 is not flexible enough to represent highly skewed distributions.
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3.4.3 The ensemble Gaussian Mixture filter

The CSN distribution considered previously is still similar to a Gaussian distribution in the sense

that it can represent only unimodal distributions, and its high order statistics are fixed. For more

complex distributions, one should consider particle filtering. However, the particle filter is known

to undergo a degeneracy issue that can lead to dramatic collapse during the weighting/resampling

step, issue that is exacerbated when static parameters are added to the system. Here we present an

nonlinear Kalman filter type algorithm, which uses as distribution baseline a mixture of Gaussians

(GM), and MC approximation to propagate the distributions through nonlinear functions. This

idea of fitting a mixture of Gaussians to a particle approximation has already been seen in the

literature, for instance in the GMSPPF previously mentioned in the particle filtering review section.

The GMSPPF makes use of the unscented transform to derive a proposal distribution from which

particles are drawn, then weighted according to the importance sampling principle. On the contrary

the algorithm presented thereafter does not rely on the unscented transform, it uses MC simulation

to propagate through both f and h.

Derivation of the algorithm

As previously mentioned, to derive a nonlinear Kalman filter type algorithm, one needs two com-

ponents:

• a baseline distribution that captures the needed moments and is closed under conditioning

(for measurement update),

• a choice of approximation to propagate the distribution and its moments through a nonlinear

function.

The GM distribution is closed under conditioning (see appendix B.3), and its parameters are usu-

ally learnt through maximum likelihood (EM algorithm), thus a MC approximation seems appro-

priate here.
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The algorithm follows the following steps:

• Start with knowledge of the posterior distribution at time step k−1

p(xk−1|y1:k−1)∼ GM(π
(l)
k−1,µ

(l)
k−1,Σ

(l)
k−1)

(l = 1 : Nmix, number of Gaussians in the mixture), and its moments

• Propagation step: estimate the prior pdf p(xk|y1:k−1)

– Sample from both the input RV xk−1|y1:k−1 and the noise νk−1

– Propagate each sample through f (xk−1|y1:k−1)+νk

• Update step: estimate the posterior pdf p(xk|y1:k)

– Sample from the noise ηk

– Propagate each sample through h(xk|y1:k−1)+ηk

– Fit a GM distribution (through EM algorithm) to the samples to estimate the joint pdf

p(xk,yk|y1:k−1)∼ GM(π
(l)
xy ,µ

(l)
xy ,Σ

(l)
xy )

– Use the closure under conditioning property of the GM distribution to condition upon the

observed value yk and thus find the parameters π
(l)
k ,µ

(l)
k ,Σ

(l)
k of the posterior distribution

p(xk|y1:k)∼ GM(π
(l)
k ,µ

(l)
k ,Σ

(l)
k ) as:

π
(l)
k =

π
(l)
xy N

(
yk; µ

(l)
y ,Σ

(l)
yy

)
∑

L
j=1 π

( j)
xy N

(
yk; µ

( j)
y ,Σ

( j)
yy

) (3.19a)

µ
(l)
k = µ

(l)
x +Σ

(l)
xy (Σ

(l)
yy )
−1(yk−µ

(l)
y ) (3.19b)

Σ
(l)
k = Σ

(l)
xx −Σ

(l)
xy (Σ

(l)
yy )
−1

Σ
(l)
yx (3.19c)
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Figure 3.12: Results of several Kalman filter type filters and particle filter for a benchmark highly
nonlinear 1-dimensional system.

Results on a highly nonlinear problem

This algorithm is tested on a highly nonlinear benchmark problem from the particle filtering liter-

ature:

xk =
xk−1

2
+25

xk−1

1+ x2
k−1

+8cos(1.2k)+νk (3.20a)

yk =
x2

k
20

+ηk (3.20b)

where νk ∼N (·;0,1) and ηk ∼N (·;0,10). Even though the noise terms are Gaussian, this prob-

lem is known to lead to multimodal posterior distributions for certain time steps, because of the

high nonlinearities in both equations.

Results comparing several Kalman filter type filters and particle filters are shown in Fig. 3.12.

One can see that both the particle filter and our novel EnGM filter perform similarly in recovering
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both expectation and covariance of the state, and that their approximation of the mean is close to

the true state. In contrast the UKF and CSN filters perform poorly in recovering the mean, thus

showing that this highly nonlinear system requires a high order of accuracy (MC sampling) and a

more flexible underlying distribution (possibly multimodal). One can observe some discrepancies

in the high valued skewness parameters between the particle filter and the EnGM filter, however the

sampling variance is quite high for these high valued skewnesses (i.e., two consecutive runs of the

same algorithm might give significantly different results), due to the fact that sample estimates of

high order moments are quite sensitive to outliers and thus have usually higher sampling variance.

One could potentially look at more robust higher order statistics (e.g. [Welling, 2005]) to get a

better idea of the higher order statistics. Also, a mixture of 3 Gaussians was used here, more

Gaussians might be needed to accurately represent the distribution at those time steps when the

skewness is large.

The idea behind this filter is mainly to use a flexible distribution, and accurate approxima-

tion of the transformed distributions, as in the PF, but still using closed form expressions for the

measurement update. In this way, we might be able to alleviate the degeneracy problem seen in a

particle filter type algorithm. Also, particles are resampled at each time step from the approximated

posterior pdf, and thus alleviating the sample impoverishment issue for slowly mixing systems (es-

pecially when static parameters are added to the state vector). The performance of this algorithm

should be tested on a high dimensional system to study its behavior and possible improvements

compared to a generic particle filter.

3.5 Concluding remarks

In this chapter, a detailed review of the UKF and its assumptions was performed. Also, the accu-

racy of the UT (in the UKF framework) and the Gaussianity assumption were inspected for small
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structural systems. It thus appears that the UKF, when using a symmetric sigma point set, yields

very accurate estimates of the posterior mean and covariance of the states and parameters com-

pared to a PF, as long as 1) the noise terms are actually Gaussian and 2) the systems studied are

identifiable. In these cases, the Gaussianity assumption made in the UKF is quite correct, and the

UKF yields acceptable results with a much reduced computational time compared to a PF.

For cases where the noise terms are known to be non-Gaussian, but the posterior pdf of the

state itself is still expected to be close to Gaussian, one can use an enhanced sigma point set to

take into account higher order moments of the noise when propagating moments, while still using

the linear Kalman filter measurement update equations (derived using a Gaussianity assumption

on the states).

For cases where the Gaussianity assumption on the state might be incorrect, it is possible

to use the nonlinear Kalman filtering framework to derive enhanced Kalman filtering schemes

that use as a baseline a different distribution than the Gaussian one, if possible a more flexible

distribution (e.g., multi-modal, or with adjustable higher order moments). In this chapter, this

framework was solely tested on two highly nonlinear, non-Gaussian, mathematical benchmark

problems. For structural systems, non-Gaussianity can arise due to a lack of identifiability in

the system (the data is not informative enough to accurately learn all the parameters). Using the

framework derived therein, a Gaussian mixture unscented Kalman filter can be derived to tackle

this type of challenging problems, with a reduced computational time compared to a PF. This work

is the focus of a subsequent chapter (chapter 5).

The systems considered in the first two chapters of this dissertation contained relatively few

DOFs; they could be used as reduced order models to represent the main dynamics of a larger

system. However, in some cases it might be useful to perform identification on larger high-fidelity

representations such as finite element models that are used a lot in practice in the fields of civil,

mechanical, aerospace or even bio-mechanical engineering. Increasing the number of DOFs in
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the system will greatly increase the computational burden of filtering algorithms. In the following

chapter we present a novel method, also based on the principle of marginalization, to help alleviate

this problem when making use of the UKF for parameter identification.
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Chapter 4

A marginalized unscented Kalman filtering

approach for efficient parameter estimation

in finite element models

4.1 Literature review: dimension reduction in Gaussian filters

As explained in the introduction of this dissertation, the on-line formulation of filtering algorithms

presents the advantage that process noise, which might encompass stochastic excitations and mod-

eling errors, can be easily taken into account. However, it comes at the expense that uncertainty

around both the dynamic states xdyn and the parameters θ must be quantified and propagated. For

the UKF more specifically, this means that the number of sigma points, and thus the number of

function evaluations, will be proportional to the size of the augmented state vector nx = nxdyn +nθ .

This renders the use of the UKF cumbersome for systems where the number of DOFs is large such

as finite element (FE) models, systems that are of great interest in the civil and mechanical engi-

neering communities where FE analysis (FEA) is used a lot in practice. This dimensionality issue
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also arises in other fields, for instance state estimation in ocean or atmospheric data assimilation

(see e.g. [Ambadan and Tang, 2009]).

To mitigate this issue, methods have been derived to decrease the number of sigma points of

the UKF, and consequential its overall computational burden. Reduced-order (unscented) Kalman

filters (see e.g. [Farrell and Ioannou, 2001, Solonen et al., 2016]) make use of a reduced-order

model that capture the ”most important” components of the system dynamics, which can be done

for instance using a Principal Component Analysis (PCA). The applicability of this method and

its potential for computational reduction largely depend on the existence of a low-dimensional

space that can represent the system states. This method might thus be quite problem dependent,

especially for highly nonlinear structural systems, where the state dynamics will depend not only

on the type of nonlinearities present but also on some characteristics of the excitation (frequency,

amplitude and so on) that might vary over time. On the contrary, reduced-rank filtering algorithms

take into account these variations over time by re-computing the low-dimensional subspace at

each time step. Several algorithmic variants exist, the main idea being to compute a low-rank

estimate of the full covariance matrix at each time step by solving an eigenvalue problem (see

e.g. [Fisher, 2002] for computation of a subspace through the so-called Hessian singular vectors,

[Brasseur and Verron, 2006] which reviews developments of such algorithms in the context of

the extended Kalman filter, [Padilla and Rowley, 2010] for derivation of a low-rank unscented

Kalman filter based on the singular value decomposition of the propagation error matrix). For such

algorithms, the question arises of the best choice of truncation threshold in the eigenvalue/singular

value decomposition, which, based on a few numerical tests we have performed with this type of

algorithm on small structural systems, might also be largely dependent on the system studied and

quite difficult to tune.

Most of the literature previously cited deals with state estimation in the context of data assimi-

lation of atmospheric or ocean systems. More closely related to our systems of interest, a reduced-
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rank UKF is used for parameter estimation of a FE model inspired from cardiac biomechanics in

[Moireau and Chapelle, 2011, Xi et al., 2011]. The size of the low-rank subspace is chosen as the

size of the parameter space, thus reducing enormously the number of sigma points in the analy-

sis. It has to be noted however that in one case, the system was quasi-static, thus the uncertainty

around the dynamic states did not propagate forward in time, explaining why only uncertainty

around the parameters should be considered (more about this will be discussed later in this chap-

ter). In the other paper, an additional Luenberger filter was integrated to the analysis to provide at

each time step an improved estimate of the dynamic states, thus reducing uncertainty around the

states and enabling the user to use a reduced sigma point set to solely quantify uncertainties around

the parameters. The use of the Luenberger state observer was detailed when considering velocity

measurements; its applicability to more general measurement types (including acceleration mea-

surements, for which the measurement equation is a function of both the parameters and the states,

or combinations of several types of measurements) should be tackled to understand if this method

could be generalized to different dynamical systems.

Finally, in [Astroza et al., 2015] parameter estimation in a distributed plasticity FE model is

considered using a slightly different approach where the UKF is used in the parameter space only.

Not including the dynamic states as part of the state vector implies that 1) there is no process noise

with respect to the dynamic states, and thus no explicit way to take into account uncertainty in the

excitation and FE modeling errors, and 2) the full analysis with a new sampled value of θ must be

run at each time step, from t0 to tk, since dynamic states are not updated when new measurements

are available.

In the following we present an alternate method to reduce the number of sigma points when per-

forming parameter estimation in dynamical systems represented by a FE model. As for a generic

UKF, the augmented state approach is used, thus enabling introduction of process noise with re-

spect to the dynamic states (uncertainty in the excitation for instance). Contrary to the reduced-
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order and reduced-rank filters previously described, the method proposed therein does not require

truncation of the dynamics, instead it uses the structure of the equations to decompose uncertain-

ties around the dynamic states vs. parameters and uses different moment propagation schemes for

each of them. Fundamentally this method relies on the concept of marginalization, which was first

applied to increase efficiency of the unscented transform in [Morelande and Moran, 2007]. The

method is shown to be generalizable to many types of FE models, and is derived in a way that opti-

mally makes use of linear vs. nonlinear FE analysis, as implemented in generic FEA software, the

goal being to enable in the future integration of such a learning algorithm in a generic FE software.

In the following section an overview of the method is outlined to explain the fundamental differ-

ences between this new approach and the generic UKF as well as its potential for computational

time reduction when performing parameter estimation in FE models.

4.2 Marginalization for improved efficiency of parameter esti-

mation in FE models

Integration of an external FEA software with a generic UKF can be easily implemented as shown in

Fig. 4.1, due to the fact that the unscented transform is a non-intrusive moment propagation scheme

(it requires only function evaluations, no derivatives). However, it will be extremely computation-

ally cumbersome for FE models with many DOFs. In this section it is shown how marginalization

can be applied to FE models to reduce computational cost.

Recall that in the UKF, the unscented transform is used to propagate moments through the

propagation and measurement equations f ,h. Let us go back to a generic setting, where an input

RV X with known moments undergoes a nonlinear transformation g to yield the output RV Z =

g(X) whose moments we want to estimate. The principle of marginalization consists of partitioning

the input state vector as X =

{
a

b

}
and decompose computations of output expectations E [Z] =
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Figure 4.1: Integration of a UKF and external FEA software for forward propagation. The static
parameters θ could include material properties, values defining the geometry of the problem and
so on.

E [g(X)] (and other moments) as follows:

Ep(a,b) [g(a,b)] =
∫

a,b
g(a,b)p(a,b)dbda

=
∫

a

∫
b|a

g(a,b)p(b|a)db︸ ︷︷ ︸
can be computed analytically

p(a)da (4.1)

As explained in [Morelande and Moran, 2007], if the nonlinear function g is conditionally linear in

b, i.e., g(X) = ϕ(a)+G(a) ·b, and the input X is assumed to be Gaussian - assumption that agrees

with the nonlinear Kalman filtering framework used in the UKF - then integration over p(b|a) can

be performed analytically (full derivation and equations will be given later in this chapter). The

UT is then used solely to perform integration over p(a), and the number of sigma points is reduced

from Nsig ∝ nx = na+nb to Nsig ∝ na. In this setting, computation of moments will require function

evaluations g(a,b) as in the generic UKF as well as evaluations of the matrix G(a), which happens

to be the Jacobian of the transformation g with respect to subvector b. Thus, on condition that 1)

103



CHAPTER 4. A MARGINALIZED UNSCENTED KALMAN FILTERING APPROACH FOR
EFFICIENT PARAMETER ESTIMATION IN FINITE ELEMENT MODELS

the Jacobian G(a) can be evaluated in an efficient fashion and 2) the reduction in the number of

sigma points is relatively consequent (i.e., na� nx), such a marginalization procedure can lead to

a substantial reduction in the filter’s computational time.

First, it is shown on a simple example how this procedure can be applied to joint state/parameter

estimation in linear dynamical systems. It is important to mention here that the term linear system

therein refers to a system that behaves linearly, according to the principles of linear vs. nonlinear

dynamics. However when performing joint/state parameter estimation on such linear system, the

equations f ,h become nonlinear functions of the augmented state, due to multiplicative terms such

as stiffness×displacement. In the remainder of the chapter particular attention is thus given to the

usage of terms linear/nonlinear system vs. linear/nonlinear functions. A generic linear system,

discretized using a simple forward Euler scheme (more appropriate discretization schemes will be

discussed later on), can be represented using the following system equations:{
uk

vk

}
=

{
uk−1

vk−1

}
+dt

[
0 I

−M−1K −M−1C

]{
uk−1

vk−1

}
+dt

{
0

M−1P

}
(4.2a)

yk =
[
H1 H2

]{uk

vk

}
(4.2b)

where u,v represent the vectors of displacements and velocities respectively (the vector of ac-

celerations will be referred to as a). For a linear system, the system matrices and force vector

M,C,K and P do not depend on the dynamic states xdyn =

{
u

v

}
, however they are definitely

a function of the static parameters θ . Such a measurement equation as (4.2b), where matri-

ces H1,2 may be a function of the parameters θ encompasses displacement, velocity, accelera-

tion or even strain measurements. In the previous equations one can see that, knowing the pa-

rameters θ , both the propagation and measurement equations are linear in the dynamic states

xdyn =

{
u

v

}
, and that the Jacobian matrices with respect to the dynamic state vector are sim-

ply J f =

[
I dtI

−dtM−1K I−dtM−1C

]
and Jh =

[
H1 H2

]
for the propagation and measurement
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equations respectively. Thus, the marginalization procedure previously described can be used, in-

troducing the partitioning a← θ and b← xdyn. Using this specific partitioning, the computations

of the Jacobians G = J f ,h can be computed very efficiently since they are quite simple functions

of the system matrices M,C,K, which are necessarily computed by the FEA software during prop-

agation, regardless of the marginalization procedure. Thus this Jacobian computation will not

add large computational requirements to the UKF. However, if the number of parameters is much

smaller than the number of dynamic states, which would quite often be the case in large FE models,

then this marginalization procedure would lead to a large decrease in the number of sigma points,

and thus in the number of function evaluations (where function evaluation in this context means

running the FEA forward in time). In the following sections it is shown that this process is gener-

alizable to other discretization schemes, for instance the Newmark-beta method, largely employed

in FEA due to its unconditional stability (for a given choice of discretization parameters), and the

performance of the algorithm is studied on three numerical examples.

Contrary to linear systems for which the restoring force F = Ku+Cv depends linearly on the

states u,v; nonlinear systems are characterized by a restoring force F that is a nonlinear function of

the dynamic states. Very often, the stiffness term K is a nonlinear function of the displacement u,

as can be the force term P (e.g., follower force). In this context, the propagation equation cannot be

written directly as a linear function of the dynamic states, and integration over p(b|a) = p(xdyn|θ)

cannot be performed exactly. Possibly, a different partitioning of the augmented state vector could

be considered, however this solution would undoubtedly be problem dependent and thus difficult to

generalize. Instead one can maintain the partitioning previously described, i.e., a← θ , b← xdyn,

and approximate the integral
∫

b|a using a first order Taylor series expansion (method used in a

EKF), which will require computation of the Jacobian of the propagation equation with respect

to the dynamic states. For instance, in the case of a forward Euler discretization, the propagation
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equation and its Jacobian can be computed as follows:[
u

v

]
k+1

=

[
u

v

]
k

+dt ·

[
vk

M−1P(uk)−M−1F(uk)−M−1Cvk

]
(4.3a)

J f =

[
I dt · I

−dt ·M−1Kt I−dt ·M−1C

]
(4.3b)

F(uk) nonlinear restoring force (nonlinear stiffness term) (4.3c)

Kt =
∂ (F(u)−P(u))

∂u
tangent stiffness matrix (4.3d)

Again, such an approach would be computationally efficient only if 1) the size of the parameter

vector θ is much smaller than the size of the augmented state vector, and 2) the Jacobian can be

computed efficiently. Looking back at Eq. (4.3b), one can observe that this Jacobian is again a

function of the linear system matrices M,C, as well the so-called tangent stiffness matrix Kt , which

is nothing else than the derivatives of the nonlinear stiffness/external force terms with respect to

the dynamic states. Efficient calculation of the tangent stiffness matrix is already integrated in any

FEA software and is usually performed analytically, since FEA software usually solve for non-

linear problems using a Newton scheme, i.e., subsequent linearizations of the nonlinear problem,

which requires multiple computations of the tangent stiffness matrix, and thus an efficient imple-

mentation. Furthermore, as for the linear problem, these matrices must be computed during the

propagation step, regardless of the marginalization procedure, thus computing the Jacobian would

not increase enormously the computational burden per time step. This algorithm is studied more

in depth in section 4.4, using more suited discretization schemes, and its potential for parameter

identification in nonlinear systems is demonstrated on two examples.

To summarize, the algorithms proposed in this chapter are based on a decomposition of the

augmented state vector as dynamic states vs. static parameters to enable treatment of parameter

uncertainties using the highly accurate UT, while using an EKF to take into account uncertainties

around the dynamic states. This approach is computationally efficient over a generic UKF for
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systems that include many dynamic states, as will often be the case for FE models, due to the

fact that efficient computations of Jacobians required in the EKF can be related to computations

of the system matrices, including the tangent stiffness for nonlinear systems, which are readily

implemented in any generic FEA software. It is good to notice however that the EKF is known to

be less accurate than the UKF, especially for highly nonlinear systems. Thus the limits of such an

algorithm will also be discussed at the end of the chapter.

4.3 Implementation for linear dynamical systems

4.3.1 Marginalized UT for conditionally linear transformations

In this first section, the case of linear dynamical systems is studied. It is shown that applying

this principle of marginalization in this case leads to a more efficient algorithm, without loss of

accuracy compared to a generic UKF, i.e., no additional approximation is made compared to a

generic UKF.

First, the formulation of the marginalized unscented transform (MUT), which was first pre-

sented in [Morelande and Moran, 2007], is detailed considering the case of conditionally linear

transformations, i.e., the input RV, assumed Gaussian, is partitioned as X =

{
a

b

}
so that the trans-

formation g is linear in subvector b:

g(a,b) = ϕ(a)+G(a)b (4.4)

In this context, the Jacobian of the transformation with respect to subvector b is simply ∂g
∂b =

G(a) and is independent of b itself. Computation of output expectations E [Z] = E [g(X)] are

decomposed as follows:

Ep(a,b) [g(a,b)] =
∫

a

∫
b|a

g(a,b)p(b|a)db︸ ︷︷ ︸
computed analytically

p(a)da (4.5)
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Using the closure under conditioning property of the Gaussian distribution, moments of the

Gaussian RV b|a are given as:

E [b|a] = µb +Cba(Pa)
−1(a−µa) (4.6a)

Cov(b|a) = Pb−Cba(Pa)
−1Cab (4.6b)

where

X =

{
a

b

}
∼N

(
·;

[
µa

µb

]
,

[
Pa Cab

Cba Pb

])
Moments of the conditional output Z|a can also be calculated analytically using the closure under

affine transformations property of the Gaussian distribution.

E [Z|a] = ϕ(a)+G(a)E [b|a] = g(a,E [b|a]) (4.7a)

Cov(Z|a) = G(a)Cov(b|a)G(a)T (4.7b)

Cov(X ,Z|a) =

[
0

Cov(b|a)G(a)T

]
(4.7c)

Integration over the probability p(a) is performed using a sigma point approximation. Any

sigma point set can be used for this purpose; in the remainder of the chapter the symmetric set is

used due to its known robustness in tackling joint state/parameter estimation in dynamical systems,

as demonstrated in the previous chapter of this dissertation. The number of sigma points scales

with the dimension of subvector a, and are sampled to match its marginal mean and covariance

µa and Pa. Integration over p(b|a) and p(a) must be integrated together in order to compute the

moments of the output RV Z, which is done as follows:

• Compute a set of Nsig = 2na + 1 sigma points that match moments of subvector a: S =

{A(i),W (i)}

• For each sigma point ·(i), compute the moments of the conditional RV b|A(i), i.e., B(i) =

E
[
b|A(i)

]
and Γ =Cov

(
b|A(i)

)
using Eqs. (4.6).
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• Propagate all sigma points through the transformation g

Z(i) = g
(
A(i),B(i)

)

• Compute mean of output Z using the law of total expectation

E [Z] = Ea[E [Z|a]]

=
Nsig

∑
i=1

W (i)
m Z(i) (4.8a)

• Compute covariance of output Z using the law of total variance1

Cov(Z) =Vara(E [Z|a])+Ea(var(Z|a))

=
Nsig

∑
i=1

W (i)
c (Z(i)−E [Z])(Z(i)−E [Z])T +

Nsig

∑
i=1

W (i)
m G(A(i))ΓG(A(i))T (4.8b)

• One can also compute the cross-covariance terms needed in the measurement update step

using the law of total covariance1

Cov(X ,Z) =
Nsig

∑
i=1

W (i)
c

([
A(i)

B(i)

]
−

[
µa

µb

])
(Z(i)−E [Z])T +

Nsig

∑
i=1

W (i)
m

[
0

ΓG(A(i))T

]
(4.8c)

The key differences between the UT and the MUT and summarized in Fig. 4.2.

It is good to point out at this stage that this marginalization procedure can be successfully

applied in different scenarios and that its scope is not limited to the Gaussian setting. Actually, this

marginalization procedure is used several times throughout this thesis. For instance, it was used

in chapter 3 to derive and use higher order sigma point sets that are challenging to use on large

dimensional systems. More specifically, it was used successfully when applying the 4th order

Gaussian sigma point set to identify the parameters of the Duffing oscillator (Fig. 3.6, nX = 5).

1For certain sigma point sets, the weights used for computation of expectation vs. covariance terms are different
(noted W (i)

m vs. W (i)
c therein). When performing integration over p(a), careful attention must be given to the usage of

the correct type of weights, as shown in Eqs. 4.8.
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Figure 4.2: Principles of the unscented transform vs. marginalization unscented transform.

Computation of the sigma points and weights for this set requires solving a nonlinear optimization

scheme, problem that is easier to solve in smaller dimension (2 or 3). For this Duffing oscillator,

the 3 static parameters appear linearly in the equations, thus marginalization can be applied and na

is reduced to 2, thus the 4th order set is easily applicable. This marginalization method can also

be extended to other distributions that are closed under conditioning and affine transformations,

such as the CSN distribution. The approach is similar, however Eqs. (4.6), (4.7) are modified

according to the CSN distribution (b|a and Z|a follow CSN distributions). Also, 3rd and higher

order moments can be computed, using the law of total cumulance when applying the sigma point

approximation. This method was again successfully applied in section 3.4.2 when deriving a new

sigma point set to take into account marginal and cross skew terms in the UT. Finally, this approach

is also used in chapter 6, section 6.3.3 in order to reduce the number of sigma points and thus the

computational complexity of the UKF when integrating a shaping filter to the filtering framework

and thus tackle unmeasured excitations.
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4.3.2 Integration in the UKF framework for joint state/parameter estima-

tion of linear dynamical systems

From a slightly different point of view, the concept of marginalization has been employed to in-

crease efficiency of particle filtering schemes for quite some time, as presented in chapter 2 of this

dissertation. However, it has been much less used in the literature with respect to the nonlinear

Kalman filtering framework. This concept of marginalized unscented transform for conditionally

linear equations and its implications for the UKF was first presented in [Morelande and Moran,

2007], then recently used in e.g. [Chang, 2014a,b, Liu and Chang, 2015] to reduce computational

time. As previously mentioned, it was also used for various purposes in this present work. With

respect to computational time reduction, it is important to notice at this stage that making use of

marginalization does not necessarily lead to reductions in the computational requirements of the

UKF. Indeed, as can be seen in the details provided in the last section, using the MUT instead

of the generic UT leads to a reduction in the number of sigma points, but it increases the num-

ber of computations per sigma point through the addition of another sum term in the covariance

computation. Thus an overall reduction in computational time is contingent upon 1) a significant

reduction in the number of sigma points, i.e., na� nX and 2) being able to easily write the func-

tion g under its linear conditional form, i.e., being able to compute the Jacobian J = G efficiently.

In the next section it is demonstrated that using marginalization for state/parameter estimation in

linear FE models leads to significant reductions in computational time under the condition that the

number of parameters to be estimated does not scale with the number of dynamic states (number

of integration points in the FE model).

Integration of the MUT in the UKF framework is straightforward and simply consists in replac-

ing the generic UT by the MUT for either/both of the propagation and measurement update steps.

For state/parameter estimation of linear dynamical systems, one can show (see next two sections)

that, for certain discretization schemes, a possible partitioning of the augmented state vector is
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a← θ and b← xdyn, and the MUT can then replace the UT in both the propagation and measure-

ments update steps. Detailed algorithms for these two steps are given in Algs. 4 and 5 for this

specific partitioning. In these algorithms, propagation of the dynamic state to the next time step

simply consists in running the forward FE analysis, for a given set of parameters and initial condi-

tions, i.e., a given sigma point {Θ(i),X (i)
k−1}. Calculation of the Jacobians J f and Jh depend on 1)

the chosen discretization scheme and 2) the type of problem considered, parabolic vs. hyperbolic.

In the following sections, these Jacobian calculations are detailed for both types of problems, using

discretization schemes widely used in FE analysis due to their capacity at unconditional stability.

4.3.3 Application to linear parabolic systems

A linear parabolic system can be represented by the following dynamic equation:

Mv+Ku = P (4.14)

Heat conduction can be described as a parabolic system, where u represents the vector of tempera-

tures at the FE model nodes. Following [Hughes, 2000], a parabolic problem can be discretized in

time using a discretization scheme of the generalized trapezoidal family, with a choice of α ∈ [0,1]:

Mvk+1 +Kuk+1 = Pk+1 (4.15a)

uk+1 = uk +dt ·vk+α (4.15b)

vk+α = (1−α)vk +αvk+1 (4.15c)

For α = 1
2 , the method is known as the trapezoidal rule and is unconditionally stable, i.e., the

method is stable for any value of the time step dt. This method can also be implemented in the

following form [Hughes, 2000]:

(M+αdtK)uk+1 = (M− (1−α)dtK)uk +dt(αPk+1 +(1−α)Pk) (4.16)
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Algorithm 4: PROPAGATION STEP OF MARGINALIZED UKF
Data: Gaussian posterior at time step k−1 of joint pdf

p
(

xdyn
k−1,θ |y1:k−1

)
∼N

(
·;
{

xdyn
k−1|k−1

θk−1|k−1

}
,

[
Px

k−1|k−1 Cxθ

k−1|k−1
Cθx

k−1|k−1 Pθ

k−1|k−1

])
Result: Gaussian prior at time step k,

p
(

xdyn
k ,θ |y1:k−1

)
∼N

(
·;
{

xdyn
k|k−1

θk|k−1

}
,

[
Px

k|k−1 Cxθ

k|k−1
Cθx

k|k−1 Pθ

k|k−1

])
sample Nsig = 2nθ +1 sigma points from the subvector θ |y1:k−1 ∼N

(
·;θk−1|k−1,Pθ

k−1|k−1

)
;

for each sampled sigma point Θ(i), compute the corresponding dynamic state vector as the
mean of the conditional pdf p(xdyn

k−1|Θ
(i),y1:k−1), i.e.,

X dyn,(i)
k−1 = xdyn

k−1|k−1 +Cxθ

k−1|k−1(P
θ

k−1|k−1)
−1(Θ(i)−θk−1|k−1) (4.9a)

for all sigma points ·(i), the state conditional covariance is identical and equal to

Γx|θ = Px
k−1|k−1−Cxθ

k−1|k−1(P
θ

k−1|k−1)
−1Cθx

k−1|k−1 (4.9b)

for i = 1 : Nsig do
propagate dynamic state to next time step: X dyn,(i)

k = f (X dyn,(i)
k−1 ,Θ(i));

compute the Jacobian of the transformation f : J f (Θ
(i))

end
compute moments of prior p(xdyn

k ,θ |y1:k−1) as averages over the sigma points

θk|k−1 =
Nsig

∑
i=1

W (i)
m Θ

(i) (4.10a)

xdyn
k|k−1 =

Nsig

∑
i=1

W (i)
m X dyn,(i)

k (4.10b)

Pθ

k|k−1 =
Nsig

∑
i=1

W (i)
c

(
Θ
(i)−θk|k−1

)(
Θ
(i)−θk|k−1

)T
(4.10c)

Cθx
k|k−1 =

Nsig

∑
i=1

W (i)
c

(
Θ
(i)−θk|k−1

)(
X dyn,(i)

k − xdyn
k|k−1

)T
(4.10d)

Px
k|k−1 =

Nsig

∑
i=1

W (i)
c

(
X dyn,(i)

k − xdyn
k|k−1

)(
X dyn,(i)

k − xdyn
k|k−1

)T
+ W (i)

m J f Γx|θ JT
f︸ ︷︷ ︸

additional term (marginalization)


(4.10e)
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Algorithm 5: MEASUREMENT UPDATE STEP OF MARGINALIZED UKF

Data: Gaussian prior at time step k−1 of joint pdf p
(

xdyn
k ,θ |y1:k−1

)
Result: Gaussian posterior at time step k, p

(
xdyn

k ,θ |y1:k

)
∼N

(
·;
{

xdyn
k|k

θk|k

}
,

[
Px

k|k Cxθ

k|k
Cθx

k|k Pθ

k|k

])
sample Nsig = 2nθ +1 sigma points from the subvector θ |y1:k−1 ∼N

(
·;θk−1|k−1,Pθ

k−1|k−1

)
;

for each sampled sigma point Θ(i), compute the corresponding dynamic state vector as the
mean of the conditional pdf p(xdyn

k |Θ
(i),y1:k−1), i.e.,

X dyn,(i)
k = xdyn

k|k−1 +Cxθ

k|k−1(P
θ

k|k−1)
−1(Θ(i)−θk|k−1) (4.11a)

for all sigma points ·(i), the state conditional covariance is identical and equal to

Γx|θ = Px
k|k−1−Cxθ

k|k−1(P
θ

k|k−1)
−1Cθx

k|k−1 (4.11b)

for i = 1 : Nsig do
compute predicted measurement: Y(i)

k = h(X dyn,(i)
k ,Θ(i));

compute the Jacobian of the transformation h: Jh(Θ
(i))

end
compute moments of joint pdf p(xdyn

k ,θ ,yk|y1:k−1) as averages over the sigma points

yk|k−1 =
Nsig

∑
i=1

W (i)
m Ydyn,(i)

k (4.12a)

Sk =
Nsig

∑
i=1

W (i)
c

(
Ydyn,(i)

k − yk|k−1

)(
Ydyn,(i)

k − yk|k−1

)T
+ W (i)

m JhΓx|θ JT
h︸ ︷︷ ︸

additional term (marginalization)

 (4.12b)

Cθy
k|k−1 =

Nsig

∑
i=1

W (i)
c

(
Θ

(i)−θk|k−1

)(
Ydyn,(i)

k − yk|k−1

)T
(4.12c)

Cxy
k|k−1 =

Nsig

∑
i=1

W (i)
c

(
X dyn,(i)

k − xdyn
k|k−1

)(
Ydyn,(i)

k − yk|k−1

)T
+ W (i)

m Γx|θ JT
h︸ ︷︷ ︸

additional term (marginalization)

 (4.12d)

Ψk =

[
Cxy

k|k−1

Cθy
k|k−1

]
(4.12e)

Perform measurement update to compute posterior moments at time step k, see Eqs. (3.2b)
and (3.2c).

{xk|k,Pk|k}= KalmanMeasurementUpdate(xk|k−1,Pk|k−1,yk|k−1,Sk,Ψk) (4.13)
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which will be further used to derive the Jacobian matrix for use in the marginalization UKF

(MUKF). It is further assumed that the measurement equation is linear in the state vector, i.e.,

yk = Huk (4.17)

where the matrix H can be nonlinearly dependent on the parameters θ .

In the context of the UKF, the dynamic states xdyn would be composed solely of the vector

u, to which the vector of unknown parameters θ is added to obtain the augmented state vector x.

As previously mentioned, integration over the pdf p(a) = p(θ) is performed using the UT. Thus

let us assume that θ is known, set equal to Θ(i) (sampled sigma point). For this specific value of

θ , the system matrices M,K and P can be computed; also, an initial conditions vector X dyn,(i)
k−1 is

sampled, as the mean of the conditional pdf p(xdyn
k−1|Θ

(i),y1:k−1) (first two steps of algorithm 4).

Then the system described by this sampled sigma point can be propagated forward in time from

tk−1 to tk, by simply running the dynamic FE analysis. In order to further calculate the moments of

the joint prior pdf p(xk,θ |y1:k) (Eqs. (4.10) in Alg. 4), one also needs to compute the Jacobian of

the propagation equation with respect to the dynamic states, i.e., J f =
∂uk+1
∂uk

, which can be easily

computed using Eq. (4.16):

J f = (M+αdtK)−1(M− (1−α)dtK) (4.18)

Since the system matrices M,K have already been computed to propagate the system forward in

time, computing the Jacobian does not require excessive additional computational time.

Regarding the measurement step, fully detailed in Alg. 5, one needs to re-sample the Nsig =

2nθ + 1 sigma points, matching moments of the prior pdf p(θ |y1:k−1), and compute the corre-

sponding state sigma points X dyn,(i)
k as the mean of the conditional pdfs p(xdyn

k |Θ
(i),y1:k−1). It is

crucial here to notice that these sigma points are different from the ones sampled at the propaga-

tion step, since these new sigma points make use of the prior moments p(xk,θ |y1:k−1) obtained at
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the end of the propagation step. Again, knowledge of the Jacobian of the measurement equation is

required to compute moments of the joint pdf p(xdyn
k ,θ ,yk|y1:k−1) (Eqs. (4.12)), needed to perform

the measurement update. This Jacobian is readily available as Jh =
∂yk
∂uk

= H, which again can be

function of the parameter θ (evaluated at sigma point Θ(i)).

In a numerical example the performance of this marginalized UKF is compared to the generic

UKF, both in terms of running time and accuracy in their estimation of the moments of the poste-

rior pdf p(θ |y1:N). The problem studied is a 2-dimensional heat conduction problem, adapted from

a static problem defined in [Fish and Belytschko, 2007]. The system is excited by a homogeneous

temperature source, which varies over time as a sine function; temperature measurements are as-

sumed to be available at two locations on the plate (Fig. 4.3a). Data for this problem is generated

using a fine mesh (294 DOFs); 10% root-mean-square (RMS) noise is added to both the measure-

ment vector and the excitation. When using the UKF or MUKF for identification, the statistics of

these noise terms are assumed known, and the augmented state approach is used to deal with the

process noise. 2

An inverse problem is run employing both the generic UKF and the marginalized UKF to learn

the unknown material conductivity κ , which appears in the stiffness matrix K, always using the

same measurements time series as an input. Both algorithms are run several times, using different

meshes to represent the system. Using a very coarse mesh leads to an inaccurate parameter esti-

mate, due to the fact that the dynamics, and thus the measurements, cannot be well reconstructed

using this coarse mesh. Refining the mesh leads to greater accuracy in the parameter estimation

procedure, however it also greatly increases the number of DOFs, and thus the dimension of the

dynamic state vector xdyn. This leads to a tremendous increase in running time for the generic

2In this augmented state approach, a couple of sigma points are added to the 2nx + 1 (UKF) or 2nθ + 1 (MUKF)
sigma points, sampled to match the known moments of the process noise, assumed uncorrelated with the state vector.
This approach is used in all the numerical experiments presented therein, but these additional sigma points are omitted
from the discussion, since they are added for both the UKF and MUKF and thus do not participate in the performance
variations observed between these two algorithms.
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UKF, much more so than for the marginalized UKF, for which Nsig does not scale with the size

of the state vector but solely with the number of parameters to be learnt, which in this case re-

mains the same. This example shows clearly a significant drawback of the generic UKF for use in

conjunction with finite element models, for which mesh refinement is a crucial element. It is also

important to notice that both algorithms perform very similarly in terms of accuracy of both the

mean and covariance estimates, for a given mesh (Fig. 4.3c), i.e., the marginalization procedure

presented therein does not affect accuracy, while it enables large gains in computational time. This

was expected for this case since the system behaves linearly, and it was shown that in this case the

propagation equation is linear in the dynamic states, thus marginalization does not introduce any

additional approximation compared to a generic UKF.

4.3.4 Application to linear hyperbolic systems

Formulation

In this section, the method previously described is applied to the more common case of a linear

hyperbolic system, whose dynamics can be represented by the following equation:

Ma+Cv+Ku = P (4.19)

with initial conditions u0,v0. The system matrices M,C,K and external force vector P can be

nonlinearly dependent on the parameters θ , but are not a function of the dynamic states. Following

[Hughes, 2000], the initial value problem can be solved using one of the widely used Newmark
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Figure 4.3: Performance of UKF vs. MUKF on a parabolic (heat conduction) problem.

118



4.3. IMPLEMENTATION FOR LINEAR DYNAMICAL SYSTEMS

methods, whose predictor/corrector implementation is written as follows:

ũk+1 = uk +dtvk +
dt2

2
(1−2β )ak displacement predictor (4.20a)

ṽk+1 = vk +(1− γ)dtak velocity predictor (4.20b)(
M+ γdtC+βdt2K

)
ak+1 = Pk+1−Cṽk+1−Kũk+1 solve for acceleration (4.20c)

uk+1 = ũk+1 +βdt2ak+1 displacement corrector (4.20d)

vk+1 = ṽk+1 + γdtak+1 velocity corrector (4.20e)

Using β = 1
4 and γ = 1

2 yields an implicit method with unconditional stability, often referred to as

the average acceleration method or trapezoidal rule. This method will be used in the remainder of

the paper to avoid keeping cumbersome notations.

With respect to the UKF, the state vector is now composed of both displacement and velocity

terms at the free DOFs, i.e., xdyn
k =

{
uk

vk

}
. Similar to the parabolic problem, utilization of the

marginalization scheme requires writing the propagation equation as a conditionally linear function

of the dynamic states, i.e., xdyn
k+1 = ϕ(Pk,k+1,θ)+G(θ)xdyn

k . After some algebra, it is possible to

show that the Newmark method can indeed be written in such a way, with

G =

N−1
(

M+ dt
2 C− dt2

4 K
)

dtN−1M

−dtN−1K N−1
(

M− dt
2 C− dt2

4 K
) (4.21a)

N =

(
M+

dt
2

C+
dt2

4
K
)

(4.21b)

G is the Jacobian of the propagation equation with respect to the dynamic states, i.e., G = J f ;

marginalization can be applied to the UKF in the exact same fashion as for a parabolic problem,

using this new value of J f in Alg. 4.

Regarding the measurement step, a conditionally linear measurement equation of the form

yk =
[
H1 H2

]{uk

vk

}
(4.22)

encompasses strain, displacement, velocity as well as acceleration measurements (the latter is ob-
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tained by setting H1 =−M−1K, H2 =−M−1C). The Jacobian Jh =
[
H1 H2

]
can thus be used

for marginalization in Alg. 5.

Numerical application: 2D linear elasticity

Performance of the marginalization procedure is first demonstrated on a 2D linear elasticity prob-

lem, as shown in Fig. 4.4a, where two material parameters must be identified (Young’s modulus

and Poisson ratio of the plate). The unstructured triangular mesh is generated using the DistMesh

program ([Persson and Strang, 2004]). 10% RMS noise is added to both biaxial displacement mea-

surements before using them for identification. As for the parabolic problem, the marginalization

procedure does not negatively impact accuracy of the identification procedure (Fig. 4.4b), which

was expected from the theory previously detailed. It however enables a large reduction in the num-

ber of sigma points compared to a generic UKF, yielding a significant reduction in computational

time (Table 4.1).

Numerical application: 2D truss subjected to seismic ground motion

This second example deals with a 2D linear truss, subjected to a vertical ground motion. Rayleigh

damping is used as C = δ1M+δ2K, whose parameters δ1,2 are being learnt along with the Young’s

modulus of each of the 21 elements, appearing in the stiffness matrix K. This creates a nonlinearity

with respect to the parameters in the propagation equation. A set of strains, displacements and

accelerations are measured; at least one quantity is measured at each DOF to avoid unidentifiability

issues.

Again, the UKF and MUKF perform similarly in terms of accuracy in their estimation of the

mean of the posterior pdf p(θ |y1:N) (Figs. 4.6a and 4.6b). However, in this particular example

the gain in computational time due to the marginalization procedure is not as substantial as in the

previous cases, even though a gain of about 30% is still obtained (Fig. 4.2). The reason for this
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Figure 4.5: 2D linear elasticity example: performance of UKF vs. MUKF

generic UKF marginalized UKF

number of sigma points Nsig = 1383 Nsig = 7
running time per time step 31 sec 0.8 sec

Table 4.1: Running time comparison for generic UKF vs. MUKF for 2D linear elasticity example
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is that, in this specific problem, the number of parameters does increase with the dimension of the

problem (number of elements), as does the number of sigma points in the MUT. Since marginal-

ization also entails additional computations per sigma point compared to a generic UKF, the small

reduction in sigma points is hardly capable of offsetting these additional computations. This again

shows that the concept of marginalization will not necessarily yield large gains in computational

time, unless the number of parameters is small compared to the number of DOFs, which is actually

quite common in FE models.

4.3.5 A discussion on quasi-static vs. fully dynamic problems

In this section we introduce a discussion on parameter estimation for static or quasi-static systems,

i.e., systems for which the excitation is not time dependent, or varies slowly enough in time so that

inertial effects can be neglected. These systems are then assumed to be in internal equilibrium at

each time step k

Kuk = Pk (4.23)

Intuitively, one can understand that for this type of systems, uncertainty around the unknown states

does not govern the behavior of the UKF since this uncertainty does not propagate forward in time.

Thus sigma points should only be needed to capture uncertainty around the unknown parameters,

i.e., Nsig = 2nθ + 1. This can also be proved rigorously using the marginalization concept, since

the propagation equation can be written as:

uk = f (uk−1) = K−1Pk +0 ·uk−1 (4.24)

This equation is obviously linear in the dynamic vector uk−1, with G = 0; the marginalization

principle can be utilized and the number of sigma points need only to scale with the dimension of

the parameter vector. This approach generalizes to nonlinear quasi-static systems, since again the

propagation equation would be independent of the past dynamic state.
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Figure 4.7: Performance of UKF vs. MUKF for a 2D linear truss

generic UKF marginalized UKF

number of sigma points Nsig = 133 Nsig = 49
running time per time step 0.30 s 0.20 s

Table 4.2: 2D linear truss example: running times of generic UKF vs. MUKF
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Figure 4.8: Error on estimating the Young’s moduli parameters of the linear truss, MUKF vs.
truncation UKF (fully neglecting uncertainty around the states).

As mentioned in the introduction of this chapter, this property of quasi-static systems is also

discussed in [Xi et al., 2011], where a reduced-rank filter based on a SVD decomposition of the

covariance matrix is utilized for identification. It is explained there that due to the quasi-staticity

of the problem, the uncertainties primarily lie in the parameter space and only nθ singular values

need to be kept in the SVD decomposition of the covariance matrix. Here it is shown instead that

no truncation, and no SVD decomposition, are actually necessary in this case since one can reduce

the number of sigma points through the concept of marginalization.

A deeper study of the theory and possible applications of this method for quasi-static systems

would deserve a more thorough investigation and is not presented in this current paper due to

space limitations. However, it is important to notice at this stage that, if for quasi-static systems it is

possible to somewhat reduce the uncertainty space to the parameter vector space, it is impossible to

do the same for fully dynamic systems. Even though the main task of the joint filtering procedure

may be to identify unknown parameters, and prior uncertainty around the parameters might be

much larger than prior uncertainty around the states, the uncertainty around the dynamic states

should not be neglected during the filtering procedure.
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To show this, let us go back to our marginalization problem:

p(xk|y1:k−1) =
∫

xk−1

p(xk|xk−1) p(xk−1|y1:k−1)dxk−1 (4.25a)

=
∫

θ

∫
xdyn

k−1

p
(

xk|xdyn
k−1,θ

)
p
(

xdyn
k−1|θ ,y1:k−1

)
dxdyn

k−1︸ ︷︷ ︸
Ix: solved using a point approximation

p(θk−1|y1:k−1)dθk−1 (4.25b)

Neglecting the uncertainty around the dynamic states could be simply performed by approximating

integral Ix as a single point approximation, by evaluating it at the mean of the conditional proba-

bility p
(

xdyn
k−1|θ ,y1:k−1

)
. Then a sigma point approximation is only needed to evaluate an integral

over p(θ |y1:k−1). This leads to a similar algorithm as the MUKF, with the difference that the addi-

tional covariance terms (related to the Jacobians) are set to 0. Running this truncation algorithm on

the previous truss system yields large discrepancies in the identified parameters (Fig. 4.8). This is

due to the fact that in a fully dynamic system, uncertainties around the states propagate forward in

time, and can in turn affect identification of the static parameters. Those results were further con-

firmed by running a reduced-rank filter on different types of fully dynamic, rapidly varying linear

and nonlinear systems. For these systems, keeping only nθ singular values in the decomposition

yielded inaccurate results, proof that uncertainty around the states need to be taken into account for

such systems. In [Moireau and Chapelle, 2011], this problem is alleviated using a first-stage ob-

server to reduce uncertainty around the states. In the marginalization framework presented therein,

this uncertainty is instead fully taken into account through the additional terms in the covariance

calculations.
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4.4 An extended-unscented Kalman filter for parameter esti-

mation in nonlinear finite element models

4.4.1 Development of an extended-marginalized UKF

The extended-marginalized unscented transform

In the previous section it was shown that the marginalized unscented transform can be applied to

joint state/parameter estimation in linear dynamical systems, potentially yielding large reductions

in computational cost for cases where the number of parameters does not scale with the number

of DOFs of the finite element model. Utilization of the MUT requires a certain format for the

system equations, specifically both f ,h should be conditionally linear in the dynamic states vector

xk, which prevents its direct utilization for parameter estimation in nonlinear dynamical systems.

However, a straightforward generalization of this method can be derived through partial lin-

earization of the system equations. Indeed, going back to the marginalization procedure for a

conditionally linear equation g, integrations over p(a) and p(b|a) are uncoupled: sigma points

A(i) are sampled to compute moments over p(a), and, for each sigma point ·(i), moments over

p(b|A(i)) are computed analytically, using the linear structure of g. Let us now consider the partial

first order Taylor series expansion about subvector b of a more generic, non conditionally linear,

function g:

g(a,b)' g(a, b̃)+ Jg(a, b̃)(b− b̃) (4.26)

where Jg =
∂g
∂b is the Jacobian of the transformation with respect to b. Using this linear represen-

tation of g, the marginalization procedure previously described can be taken advantage of, using

b̃ = E
[
b|A(i)

]
, the mean of the conditional pdf upon which integration is performed. A short

comparison and summary of equations for the UT vs. extended marginalized unscented transform

(eMUT) is presented in Fig. 4.9.
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Figure 4.9: Principle of the unscented transform vs. extended marginalization unscented trans-
form.

When integrated in a Gaussian filter, this approach can actually be interpreted as the combi-

nation of a UKF for treatment of uncertainties in the space of a and an EKF for filtering with

respect to subvector b. As discussed in the previous chapter of this thesis, the EKF reaches a

lower order of accuracy than the UKF with respect to moment propagation, however it may lead

to a reduction in computational cost when used on systems for which the Jacobian matrix can be

computed efficiently. Going back to finite element models, it is possible to show that, for certain

discretization schemes, the Jacobian with respect to the dynamic states can be related to the system

matrices computed during propagation. In particular, it is related to the tangent stiffness matrix of

the problem, whose analytical form is usually coded in FEA software since nonlinear analysis

often relies on Newton schemes, i.e., subsequent first order linearizations of the equilibrium or

dynamics equations. Thus, by choosing a similar partitioning as for linear systems, i.e., a← θ and
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b← xdyn, the eMUT can be efficiently utilized to reduce computational costs, as will be demon-

strated in subsequent examples. Before detailing computations of these Jacobians, it is useful to

quickly describe the main components of a nonlinear dynamic analysis as usually performed in

finite element analysis.

Solving for nonlinear problems in FEA software

To avoid repetitive developments, the detailed analysis is only laid out for the case of an hyperbolic

problem. Performance of the method on a simpler parabolic problem will still be demonstrated in

an example. In this section, the nonlinear systems considered exhibit the following dynamics:

Ma+Cv+F(u) = P(u) (4.27)

where F(u) is the nonlinear restoring force (nonlinear stiffness term) and P(u) is the external

excitation, which can also depend nonlinearly on the displacement vector. More general systems

could encompass nonlinearities with respect to the velocity vector (nonlinear damping term Cv

for instance), which would be treated using a similar procedure as presented therein. However we

restrict ourselves to the case defined above, knowing that it already encompasses a large variety of

nonlinear systems.

We summarize in this section a well-known method to solve a nonlinear initial value problem,

which combines a linear predictor through trapezoidal rule (or any chosen rule), and a nonlinear

corrector using for instance the Newton-Raphson iteration method (see e.g. [Bathe and Cimento,

1980, Taylor, 2017]). Recall the Newmark formulas to solve for an hyperbolic initial value prob-
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lem:

uk+1 = uk +dtvk +
dt2

4
(ak +ak+1) (4.28a)

vk+1 = vk +
dt
2
(ak +ak+1) (4.28b)

Mak+1 +Cvk+1 +F(uk+1) = P(uk+1) (4.28c)

Since the momentum equation is nonlinear, the Newton-Raphson iterative procedure, which uses

subsequent linearizations of the momentum equation, is used to solve for the previous system at

time step k + 1. It is recommended to start the iteration with u
[0]
k+1 = uk (superscript refers to

iteration number in the Newton-Raphson procedure), v[0]k+1 = −vk and a
[0]
k+1 = −

4
dtvk− ak. Then

the update formulas, which satisfy the above Newmark formulas, are as follows:

u
[i+1]
k+1 = u

[i]
k+1 +∆u

[i+1]
k+1 (4.29a)

v
[i+1]
k+1 = v

[i]
k+1 +

2
dt

∆u
[i+1]
k+1 (4.29b)

a
[i+1]
k+1 = a

[i]
k+1 +

4
dt2 ∆u

[i+1]
k+1 (4.29c)

The displacement increment ∆u
[i+1]
k+1 is obtained through linearization of the momentum equation:

K?[i]
t ∆u

[i+1]
k+1 = P(u[i]k+1)−F(u[i]k+1)−Cv[i]k+1−Ma

[i]
k+1 (4.30)

where

K?[i]
t = K[i]

t +
2
dt

C+
4

dt2 M (4.31)

In this last equation, the term K[i]
t represents the tangent stiffness matrix, as computed for a static

problem, i.e., it is the Jacobian of the momentum equation with respect to the displacement vector

K[i]
t = ∂ (F−P)

∂uk+1
evaluated at u[i]k+1 (in the nonlinear cases the tangent stiffness is a function of the

displacement).
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Jacobian computations for the eMUT

Utilization of the MUKF requires evaluation of the Jacobian of both the propagation and mea-

surement functions f ,h. With respect to the propagation equation, derivation of an approximate

Jacobian can be performed by differentiation of the Newmark formulas (Eqs. 4.28), which yields

the following:

J f =
∂ f

∂xdyn
k

=


(

K
?[i f ]
t

)−1(
4

dt2 M+ 2
dtC−K[0]

t

) (
K
?[i f ]
t

)−1 ( 4
dt M

)(
K
?[i f ]
t

)−1(
− 2

dt K[0]
t − 2

dt K
[i f ]
t

) (
K
?[i f ]
t

)−1(
4

dt2 M− 2
dtC−K

[i f ]
t

)
 (4.32a)

K?[i]
t = K[i]

t +
2
dt

C+
4

dt2 M (4.32b)

A more detailed derivation is provided in appendix D. This formula leads to an approximate Jaco-

bian in the sense that the derivation does not explicitly take into account the different iterations of

the Newton scheme. However, this Jacobian term appears solely in the dynamic state covariance

computation and it is thus reasonable to believe that using an approximate Jacobian will not neg-

atively affect learning of the parameters, as long as it is not completely ignored. If time steps are

relatively large however, and the tangent stiffness Kt greatly varies within a time step, we would

recommend to subdivide the time step and perform several subsequent propagations (similar to a

bisection method, as used in nonlinear FE analysis when the Newton method does not converge).

With respect to the measurement update, many types of measurements lead to a measurement

equation h that is truly linear in the states (as explained in the section that considered linear dy-

namical systems), thus marginalization can be applied exactly. If h happens to be nonlinear in the

states, then its Jacobian Jh should be computed for the problem at hand. In the following examples,

a small number of states were measured, leading to a simple measurement equation in that case.

Having computed the Jacobians of both transformations, the eMUKF can then be applied to

nonlinear problems. The algorithms are identical to the ones presented for the linear systems (Algs.

4 and 5 in the previous section), using the Jacobians J f ,h derived in this current section. This novel

130



4.4. AN EXTENDED-UNSCENTED KALMAN FILTER FOR PARAMETER ESTIMATION
IN NONLINEAR FINITE ELEMENT MODELS

eMUKF was tested on two numerical examples, a parabolic and an hyperbolic problems.

4.4.2 Numerical example: heat conductivity on a plate with nonlinear con-

ductivity

The linear heat conduction problem is revisited here, assuming that the material exhibits a non-

linear conductivity κ(u) = κ0eα0u , where both κ0 and α0 must be identified from data. For this

specific example, the generic UKF fails after about 2s of data (numerical issues lead to a non-

positive definite covariance matrix, preventing the cholesky decomposition required to sample

sigma points). Artificial noise was added to both states and parameters to try and render the UKF

more robust, which helped alleviate the problem but did not prevent numerical failure. On the

contrary, the extended marginalized UKF performs very well here (Fig. 4.10a), in the sense that it

is able to learn adequately both unknown parameters. This also draws attention to another crucial

advantage of the eMUKF, namely that complex matrix operations such as taking an inverse or per-

forming cholesky decomposition are performed only on small sized matrices (size ∝ nθ ), contrary

to the generic UKF for which cholesky decomposition is performed on the full covariance matrix

(size ∝ nxdyn + nθ ). In the eMUKF, operations involving the full covariance matrix are solely ad-

ditions and matrix multiplications. This renders this algorithm more robust, and, as for the linear

systems case, less computationally expensive (see Table in Fig. 4.3, where the running time of the

UKF per time step was averaged over all the time steps happening before failure of the algorithm).

4.4.3 Hyperbolic problem: hyperelasticity

The hyperbolic system studied is an infinite thin cylinder made of a Mooney-Rivlin material. Due

to symmetry properties, only a quarter cylinder, made of eight 3-dimensional elements is studied

(Fig. 4.11a). As for all previous numerical experiments, the nonlinear FE analysis is performed
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(a) Nonlinear heat conduction example: time evolution of posterior moments for unknown parameters when
using a eMUKF for identification

generic UKF eMUKF

number of sigma points Nsig = 307 Nsig = 7
running time per time step 60 s 1.4 s

Table 4.3: Nonlinear heat conduction problem: running times of generic UKF vs. eMUKF

in MATLAB, the code is primarily based on the MATLAB codes given in [Kim, 2015] for static

analysis, and are adapted for dynamic analysis as presented in section 4.4.1. The cylinder is sub-

jected to a uniform internal pressure, which primarily varies as a sinusoidal function of time but

also includes noise (8% RMS Gaussian noise). For this hyperelastic problem, the deformations

are relatively large, which results in the pressure induced force P = p(t) ·Area being a function of

the displacement. In the FEM community, such a force, whose magnitude or direction varies as a

function of the system’s displacement, is known as a follower force. It appears often in real life,

a well-known example being aerodynamic forces on an aircraft wings, which will change orienta-

tion as the wings undergo large displacements or rotations. For such a case of follower force, the

calculation of the tangent stiffness matrix should include the derivative of this external force, i.e.,

Kt =
∂ (F(u)−P(u))

∂u
. Total displacements at two locations is assumed to be measured and are later

used to identify the Mooney-Rivlin material constants θ1 ∝ A10 and θ2 ∝ A01, as defined in [Kim,
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2015].

In this experiment, θ2 = 1 is assumed known and only θ1 is being identified by the Kalman

filtering algorithm. As before, the generic UKF fails after few iterations, due to numerical insta-

bility yielding a non-positive definite covariance matrix. The eMUKF on the contrary is able to

accurately identify the unknown parameter (Fig. 4.11b).

In a second set of experiments, both parameters are being learnt simultaneously. In this interest-

ing case, parameter θ1 is still learnt quite accurately, while the true value of θ2 cannot be accurately

inferred. However, the eMUKF infers a large posterior variance for that parameter (middle plot

on Fig. 4.11c), indicating that the algorithm is in fact unable to learn much about this parameter

from the available data (measurements). Interestingly though, the algorithm also infers a strong

posterior correlation between the two parameters, as can be seen on the right plot on Fig. 4.11c.

To understand these results, it was decided to investigate the relationship between the parame-

ters and the measurements in an ad-hoc fashion, echoing a sensitivity-based approach. Briefly, sen-

sitivity of the measurements with respect to varying parameters is studied by running the forward

problem, and thus generating measurement time-series, using different values of the parameters.

First, the sensitivity of the measurements with respect to varying only one parameter is studied,

while the other parameter is fixed at its true value 1. Fig. 4.12a shows that the measurements are

much less sensitive to variations of parameter θ2 (i.e., varying θ2 does not yield large variations in

y), agreeing with our previous finding that this parameter is harder to identify than parameter θ1

based on the available noisy measurements. In a second set of experiments, the forward problem

is run, and measurements time-series generated, while varying both θ1 and θ2. A 15× 15 size

grid is generated in the [θ1,θ2] space, and for each point (i, j), the error between the generated

measurement time series using θ1 = i,θ2 = j and the ”true” measurement path (θ1 = θ2 = 1) is

calculated, yielding the contour plot in Fig. 4.12b. This plot reveals that indeed, the measurements

are not sensitive to variations of the parameters along a certain line that corresponds to the first
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Figure 4.11: Performance of eMUKF on hyperelastic problem
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eigenvector of the posterior covariance plotted in Fig. 4.11c (red dotted line). This finding thus

validates the posterior covariance previously inferred with the eMUKF.

This example highlights the problem of identifiability in inverse problems, i.e., are the param-

eters of the model identifiable based on available data? From this example it seems that filtering

algorithms such as the UKF and its variants are able to provide the user with useful information

with respect to the identifiability characteristics of the model parameters. This analysis is further

developed in the next section of this dissertation, where the performance of filtering algorithms is

studied for various simple systems whose identifiability properties can be comprehensively inves-

tigated using deterministic identifiability analysis.

A final interesting remark about Fig. 4.12b is that measurements seem to be much more sen-

sitive to variations in parameters for low values of the parameters (around 0.7 here), which may

imply that the true posterior pdf based on these measurements is actually skewed, with low values

of the parameters having very low probabilities. However, a Gaussian filter such as the ones stud-

ied in this present paper is not able to infer third order moments; a higher order Kalman filter or

a particle filter should thus be utilized to study this phenomenon. The question then arises of the

applicability of this marginalization method to higher order non Gaussian filters such as the ones

presented in the previous chapter of this dissertation, a direction of our foreseen research.

4.5 Concluding remarks

In this chapter, a novel formulation was proposed to facilitate parameter estimation in dynamical

systems represented by finite element models. The approach, based on the principle of marginal-

ization, is shown to be more efficient and more robust than the generic UKF, on condition that the

number of parameters to be learnt does not scale with the number of DOFs, which would be quite

typical for a FE model. Very importantly, it is proven that the marginalization procedure would not
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Figure 4.12: Sensitivity of measurements to varying parameter values for hyperelastic problem.

lead to any reduction in accuracy, compared to a generic UKF, when applied to linear dynamical

systems.

For nonlinear systems, the approach makes use of an EKF to propagate and update uncertainties

around the dynamic states. The EKF is known to be less accurate than the UKF with respect

to moment propagation, especially when dealing with highly nonlinear systems. Furthermore,

this approach relies on the fact that an approximate Jacobian of the propagation equation can be

easily computed knowing the system matrices. For highly nonlinear hysteretic systems, involving
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plasticity for instance, additional states must be added to the state vector in order to obtain a

complete picture of the system at a given time step (hysteresis variable r in a Bouc-Wen model of

hysteresis for instance). In this case, a Jacobian might not be easily accessible, and the EKF might

lead to inaccurate results. Thus the particular case of plasticity and hysteresis should be further

studied. Overall, the applicability of this approach and its validity for highly nonlinear systems

should be investigated on larger, more complex models, which would require an implementation

in an external FEA software such as FEAP for instance.
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Part II

Accurate quantification of uncertainties in

challenging systems
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Chapter 5

Identifiability considerations in parameter

estimation

5.1 The question of system identifiability: a challenge to pa-

rameter estimation

As shown in the motivating example in chapter 1, when one uses filtering algorithms to perform

damage identification in structural systems, being able to accurately learn the posterior pdf of

static parameters is crucial. Parameter identification in real-life applications is a very challenging

task since 1) measurements from the structure will likely be sparse and noisy and 2) with respect

to nonlinear systems, the inputs might not be of high enough amplitude to fully excite all the

nonlinearities present in the system.

The fact that one has access to a limited number of measurements at specific locations on the

structure raises the questions of state observability and parameter identifiability. Looking solely at

identification of static parameters θ , the question of identifiability can be stated simply as whether

running the inverse problem using the available measurements yields an infinite number of solu-
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tions for the vector θ (unidentifiable), a finite number of solutions (local identifiability), or a unique

solution (global identifiability). Knowing the system equations f ,h, structural identifiability can

be tested using various algorithms, see for instance [Chis et al., 2011] for a thorough comparison

of methods applied to nonlinear biology models and [Chatzis et al., 2015b] for a discussion on

the subject for nonlinear structural systems. Among all possible methods, we primarily used the

software DAISY, [Bellu et al., 2007], since it is capable of distinguishing between local and global

identifiabilities, which is known to be a challenging question for nonlinear systems. It has to be

noted however that those tests assume that 1) the excitation is exactly known and 2) the system is

noise-free. Since in real-life systems are always noisy, one will use probabilistic methods when

identifying parameters, even though the noise-free system has a unique parameter solution. For

nonlinear systems, introduction of noise in the system can actually render a parameter ”unidentifi-

able”, even though it is identifiable for the noise-free system (see example in section 5.2.1).

Identifiability of a system is a property of the system itself (equations of motion and available

measurements) and does not depend on the method used to identify the parameters (frequentist

vs. Bayesian, on-line vs. off-line). However, since identification methods are based on learning

from the measurements, the identifiability properties of the system will have a direct impact on

the posterior pdfs p(θ |y1:N), and thus on the choice of filtering algorithm used to perform the

inverse problem, as will be explained through several examples in section 5.2. For systems that

are globally identifiable (there exists a unique solution to the inverse problem), posterior pdfs

would be expected to be unimodal, with relatively small variance, indicating that having access

to measurements yields improved knowledge of the parameters. For unidentifiable parameters,

one would expect the posterior and the prior pdfs to be relatively close to each other (no learning

is possible using the measurements). For locally identifiable parameters (i.e., several parameters

would lead to the same measured system response), one would expect multimodal posterior pdfs.

In [Vakilzadeh et al., 2017], an ABC technique (Approximate Bayesian Computation, an off-
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line parameter estimation method that does not require explicit knowledge of the likelihood func-

tion, contrary to MCMC schemes) is used on several problems that exhibit various identifiability

properties, and one can observe that this off-line technique is indeed able to capture non-Gaussian,

possibly multi-modal posterior pdfs. In this chapter, we study the behavior of online algorithms

to parameter identification in systems that also exhibit various identifiability characteristics, some

of them adapted from [Vakilzadeh et al., 2017]. The idea is to provide an insight into the kind of

behavior to expect from efficient online parameter learning algorithms, depending on the problem

at hand, thus guiding the choice of algorithm for future users.

5.2 Performance of online filtering algorithms for systems ex-

hibiting various identifiability properties

5.2.1 Globally identifiable Duffing oscillator

The equation of motion for a Duffing oscillator, with known mass m = 1, subjected to a known

ground acceleration ag, is:

ξ̈ (t)+ cξ̇ (t)+ klinξ (t)+βξ (t)3 =−ag(t) (5.1)

where ξ (t) represents the relative displacement of the mass, and c,klin,β the damping, linear and

nonlinear stiffness parameters, respectively. Global identifiability of this system, when measur-

ing either displacement or velocity, can be assessed using for instance the identifaibility software

DAISY [Bellu et al., 2007]; meaning that the parameter vector θ =
[
klin c β

]T
can be theoret-

ically identified in the absence of noise. If acceleration is measured, one can obtain an expression

of the displacement through integration, with the condition that initial conditions are known; thus

global identifiability results also apply when measuring acceleration.

In real life applications however, measurements will always incorporate some noise, which
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renders identification of some parameters much harder to perform. In the case of a Duffing os-

cillator, even though theoretically the nonlinearity is excited as soon as |ξ | > 0, the presence of

noise could render it impossible to detect unless it is excited at a high enough level. To incorporate

noise in the simulated data, 10% root-mean-square (RMS) Gaussian noise is added to both acceler-

ation time series (ξ̈ and ag) before using them for parameter identification. Also, when performing

real-time monitoring of a structure, it may not be reasonable to assume that initial conditions are

known exactly. Thus, algorithms are initialized with a Gaussian prior on the states
[
ξ T ξ̇ T

]T

with a non-zero variance (standard deviation is chosen as 20% RMS noise of the corresponding

state signal).

Performance of both a particle filter and a UKF are compared using this simple problem. Since

the parameters appear linearly in the system equations, the concept of Rao-Blackwellisation can

be used to increase efficiency of the PF; more specifically a MLN-RBPF, as presented in chapter

2, is used on this system. When running a UKF, only Gaussian prior pdfs can be considered,

while more complex prior pdfs can be studied when running a particle filtering scheme. Thus, the

influence of the prior is studied by running simulations with three different priors for the unknown

parameters: priors 1 and 2 are Gaussian, with different mean and covariance. Prior 3 is similar

to prior 1 (Gaussian) for parameters klin,c, but it is a mixture of 3 Gaussians for the nonlinear

stiffness parameter β , which is harder to identify. In this way, this prior is more uniform over the

admissible range of values for β , but it is still possible to run a MLN-RBPFsince the prior is a

Gaussian mixture. Prior pdfs for the three parameters are shown in Fig. 5.1a (in order to simplify

comparisons between parameters, the parameter vector θ is scaled so that θtrue =
[
1 1 1

]T
).

Fig. 5.1b shows results of the identification in the case where the excitation is of relatively

high amplitude and the Duffing oscillator is fully excited. Recall that the posterior pdfs shown in

this figure are Gaussian by construction for the UKFs, but they are a mixture of np Gaussians for

the particle filter scheme (MLN-RBPF), with np = 1000 in this case. Clearly the two algorithms
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perform well, and even the particle filters yield posterior pdfs that are very close to being Gaussian.

These observations agree with results presented in the previous chapter, where it was concluded

that the assumptions made in the UKF do not negatively impact learning of the static parameters

in nonlinear systems in the case where parameters are identifiable and noise terms are Gaussian,

in the sense that, after convergence of the parameters is achieved, the mean and variance estimates

given by the UKF agree with the PF estimates. It also appears that in this case, the choice of prior

pdf does not influence the posterior, which makes sense since the algorithm is able to learn from a

long time series of measurements, thus somewhat forgetting prior information.

Fig. 5.1c shows results of the identification in the case where the excitation amplitude is re-

duced by 80%. In this case, the linear parameters klin and c are still well recovered, but the UKF is

unable to learn the nonlinear parameter β . Its posterior pdf heavily depends on the choice of prior,

which also makes sense since in this case the algorithm detects that measurements are not very

informative, thus the prior knowledge has greater influence. The posterior mean obtained with a

particle filter scheme is closer to the true value, implying that in this case, the assumptions made in

the UKF (Gaussianity and order of accuracy of the UT) have a negative effect on its performance.

Further simulations also showed that reducing the uncertainty on the initial conditions (variance

of the prior for the states) seems to help the UKF, in the sense that posterior pdfs are closer to the

ones estimated with a particle filter.

For both algorithms, and for any choice of prior variance for the states (level of knowledge of

the initial conditions), the posterior pdf for parameter β exhibits a large variance, meaning that

the algorithm is detecting that the measurements are not informative and that uncertainty on the

identified value of β is high. Thus, even though the PF performs better in this case, running a UKF

(much faster) already provides some very useful information about the posterior pdf. Table 5.1

displays the coefficient of variation (CoV) of the parameters identified with the UKF, defined as

CoV =
σ [θ |y1:N ]

E [θ |y1:N ]
(5.2)
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(c) Posterior pdfs, in the case where the excitation is of smaller amplitude and the system behaves almost
linearly

Figure 5.1: Performance of UKF and particle filter (MLN-RBPF), with various priors, in esti-
mating the parameters (globally identifiable) of a SDOF Duffing oscillator for different levels of
excitation: algorithms differ in their estimation of the nonlinear stiffness β (∝ θ3) when the non-
linearity is not higly excited.

where σ [·] represents the standard deviation of a RV. One can observe that parameter β is not

easily identified when the excitation is of small amplitude. This will be a sign for the user that the

value identified with the UKF for this parameter should not be trusted, and that possibly running a

particle filter on this data would lead to more accurate results.

This issue of unidentifiability due to presence of noise and low amplitude excitations will be
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CoV of identified parameters

stiffness θ1 damping θ2
nonlinear

stiffness θ3

High amplitude excitation 0.0251 0.0157 0.0177
Low amplitude excitation 0.0146 0.0189 0.1656 7

Table 5.1: Coefficient of variation (CoV) of the SDOF Duffing oscillator parameters identified
with a UKF: when the nonlinear stiffness is not excited, the UKF is not able to learn it from the
measurements, which results in a CoV for this parameter much larger than for other parameters.

inherent in many real-life nonlinear systems. In [Muto and Beck, 2008], the example is given of

nonlinear hysteretic structures subjected to seismic event. If some parts of the structure exhibit

only linear behavior during the event, no information on their yielding behavior (and associated

parameters) will be available from the measurements. It is then crucial to make use of a learning

algorithm that tells the user that it is not able to learn these parameters from data, as do the PF and

UKF on the Duffing example described in this section. It is also important that the learning algo-

rithm accurately estimates the posterior variance of these parameters, i.e., the posterior uncertainty

on these parameters, since these estimates could be further used to estimate future behavior of the

structure and quantify associated uncertainties (prognosis step).

5.2.2 Unidentifiable pendulum

In the previous section we have seen that the UKF gives useful information when it comes to

noisy nonlinear systems that are not highly excited. Here we confirm this result by looking at the

behavior of the UKF on an unidentifiable problem: a unit-length pendulum with rotational spring

(stiffness krot) in free vibration, whose equation of motion is:

α̈(t) =−g · sin(α(t))− krot

m
α(t) (5.3)

where g is the known acceleration of gravity. The angle α(t) is assumed to be measured. To gen-

erate artificial noisy data, some zero-mean Gaussian noise is added to both the equation of motion
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(modeling error) and the measurements (measurement error). Covariances of both noise terms are

assumed known when running the UKF for identification. The true values of the parameters are

m = 1, krot = 10; we further define the vector of unknown parameters as θ =
[

m
1

krot
10

]T
whose

true value is then θtrue =
[
1 1

]T
.

This system is clearly unidentifiable, since there exists an infinite number of vectors θ that

would lead the same time series of measurements y1:N : namely any vector θ for which the ratio θ2
θ1

equates to 1.

Results of the identification procedure with the UKF are shown in Fig. 5.2. The convergence

plots show that the parameters are not identified correctly, since E [θ |y1:N ] =
[
1.7 1.7

]T
6= θtrue =[

1 1
]T

. This was expected since the system is unidentifiable. However, the standard deviation

(st. dev.) around each identified value remains very large, meaning that the algorithm is able to

detect that the measurements provided are not informative enough to learn the parameters. Also,

the correct ratio θ2
θ1

= 1 is identified quickly, and the posterior covariance shows a clear correlation

along the line θ1 = θ2. Thus the estimation procedure still provides the user with useful information

about this system, i.e., θ1 = θ2, which was expected in this simple case.

5.2.3 Locally identifiable system

We now consider a linear 2-DOF system, where only the second floor acceleration is measured

(and the ground excitation is known/measured). This case is studied in [Katafygiotis and Beck,

1998, Vakilzadeh et al., 2017], and the system is shown to be locally identifiable. More specifically,

defining klin,1 = θ1klin,0 and klin,2 = θ2klin,0, with known stiffness klin,0, it is shown in [Katafygiotis

and Beck, 1998] that both vectors

[
θ1

θ2

]
=

[
1
1

]
and

[
θ1

θ2

]
=

[
2

0.5

]
lead to identical measurement

time histories (when only the ground and second floor excitations are measured), a result that can

be confirmed by running the identifiability software DAISY. The posterior pdf of

[
θ1

θ2

]
is then

expected to be multimodal, a characteristic that we know the UKF cannot handle, because of its
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Figure 5.2: Pendulum with rotational spring (unidentifiable system): convergence of parameters
(mean value and mean ± 2 standard deviations) and prior/posterior covariance obtained with the
UKF

Gaussianity assumption. Indeed Fig. 5.3 shows two runs of the UKF (two different priors, on the

same noisy data): depending on the prior chosen, the UKF will output one of the two acceptable

θ1,2
1 vectors of this system, with very low posterior variance. The issue here is that if one runs

only one UKF, only one outcome will be detected, with very low variance (i.e. low uncertainty on

the outcome), the user will thus be given misleading information about the system.

For this type of system, a particle filter scheme clearly becomes the best option, since it is able

to represent any type of distribution, even multi-modal ones. Again, the MLN-RBPFcan be used

in this case. We choose a mixture of 9 Gaussians for the prior in the [θ1,θ2] space, in order to

have a prior that nicely explores the admissible space for these two parameters. Fig. 5.4 shows the

evolution in time of the posterior pdf in the 2-dimensional space. Clearly the PF with np = 4500

particles is able to approximate the true posterior, which is in this case bi-modal. In Table 5.2,

1In this problem the damping parameters are also assumed unknown, so the size of the parameter vector is 4,
however we focus our attention on the lcoally identifiable parameters θ1,2.
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Figure 5.3: 2-DOF linear system: convergence of locally identifiable stiffness parameters when
running two UKFs with different priors.

the performance of several PFs (MLN-RBPF), with various numbers of particles, is studied with

regard to both accuracy of the posterior pdf estimates (location of both modes of the posterior pdf

at t f inal = 14s) and the algorithm’s running time (measured by the tic-toc function of MATLAB,

for a 14s long time series sampled at dt = 0.01s). With only 500 particles, the PF is usually unable

to detect the two modes. When using 1000 particles or more (running time 7 min or more), the

algorithm is able to detect and localize both modes, however, when using less than about 2000-

2500 particles, estimates of the relative weights of each mode are very variable from run to run and

quite inaccurate. A PF with 2500 particles outputs consistent estimates of the posterior pdf, and

runs in about 18 min.

These results were obtained assuming that the initial conditions on the states were known (the

prior was given the correct mean and a small variance). Further simulations were run while relaxing

this assumption, i.e., the prior for the states is given the correct mean but a larger variance, 20%

RMS of the state time-series, implying that there is uncertainty on the initial conditions of the

system. This influences the behavior of the PF in the sense that more particles (about 3000) are

needed in this case to consistently obtain an accurate estimate of the posterior pdf. On the contrary,

the UKF GM presented in the following section, which is an enhancement of the Gaussian UKF,
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is more robust with regard to uncertainty on the initial conditions.

A limitation of the Rao-Blackwellised version of the particle filter lies in the fact that it re-

quires both functions f and h to be linear in the parameters (recall presentation of the concept or

Rao-Blackwellisation in chapter 2, section 2.2), which is quite restrictive. For instance it renders

this algorithm impractical for systems in which the functions f ,h consist of running an external

program (FEM software for instance), for which it will not be possible to find such a conditionally

linear partitioning. A generic bootstrap PF does not require that assumption, however it would

need an enormous amount of particles to avoid degeneracy and collapse, rendering it quite inappli-

cable for medium to large dimensional problems. In the following section we use the framework

described in the previous chapter of this dissertation to derive an unscented Gaussian mixture filter,

thus combining the computational advantages of the UKF while allowing for multi-modal prior and

posterior pdfs. This algorithm does not place limitations on the functions f ,h, and we demonstrate

that it yields very satisfactory estimates of the posterior pdfs in the numerical examples previously

studied, while being computationally advantageous over a Rao-Blackwellised particle filter.

5.3 Performance of a non-Gaussian unscented Kalman filter

In the previous chapter of this dissertation, we presented a framework to derive higher order non-

linear filters that would expand the scope of UKF type algorithms to non-Gaussian, possibly mul-

timodal, distributions and thus provide a good trade-off between the accuracy of the PF and the

UKF low computational complexity. The main idea is to expand the capabilities of the UKF to

non-Gaussian distributions - with non-fixed higher order moments, or even multi-modal distribu-

tions - while preserving the main advantages of the Kalman filter algorithms, i.e., working with an

underlying distribution rather than a particle based distribution, which facilitates the measurement

update step and avoids the degeneracy issue observed in the PF. To derive a nonlinear Kalman filter
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Figure 5.4: 2-DOF locally identifiable system: evolution in time of posterior pdfs p(θ |y1:N) when
running a PF with np = 4500 particles.

number of particles
solution 1

θtrue = [1 1]T
solution 2

θtrue = [2 0.5]T
running time

np = 500 undetected [1.96 0.53]T 218 sec
np = 2000 [1 0.97]T [1.97 0.54]T 856 sec
np = 2500 [1.01 0.95]T [1.98 0.51]T 1074 sec

Table 5.2: 2-DOF locally identifiable system: performance comparison of PFs with increasing
number of particles (accuracy in identification of the two modes of the posterior pdf, vs. computa-
tional time).
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type algorithm in this framework, one needs two components:

• a baseline distribution that is closed under conditioning to enable derivation of the measure-

ment update equations,

• a choice of approximation to propagate the distribution and its moments through a nonlinear

function (Taylor series expansion, UT or Monte-Carlo simulation).

We have shown previously that for unidentifiable/locally identifiable systems, 1) the prior dis-

tribution may sometimes have a non-negligible effect on the posterior pdf, and 2) the posterior pdfs

might sometimes be multi-modal. Using a mixture of Gaussians (GM) as a baseline distribution

to a nonlinear Kalman filter algorithm could thus prove useful. In section 3.4.3, we proposed to

use a MC approximation for propagation through nonlinear functions, since the parameters of a

GM distribution are usually learnt through maximum likelihood (EM algorithm). However the

EM algorithm becomes highly cumbersome in medium to large dimensional spaces. Here we pro-

pose a different approach, which uses the unscented transform to approximate the moments of the

transformed random variables. The following procedure yields a unscented Gaussian mixture filter

(referred to as UKF GM from now on) which appears to have already been studied independently

in other engineering fields such as tracking (see e.g. [Faubel et al., 2009, Luo et al., 2010]), for

the purpose of dynamic state filtering in nonlinear systems featuring non-Gaussian noise, possibly

causing non-Gaussianity of the posterior pdfs. We quickly present the derivation of this algorithm,

afterwards we demonstrate its effectiveness for the purpose of parameter identification in cases

where non-Gaussianity of the posterior pdfs arises from a lack of identifiability in the system.
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5.3.1 Derivation of the UKF GM algorithm

Propagation step

As previously mentioned, in this algorithm the posterior pdfs are assumed to be Gaussian mixtures.

Let’s assume that the posterior pdf at time step k−1 is a known mixture of L Gaussians:

xk−1|y1:k−1 ∼
L

∑
l=1

π
(l)
k−1N

(
·;x(l)k−1|k−1,P

(l)
k−1|k−1

)
(5.4)

One obtains the prior at time step k by propagating this pdf through the propagation equation,

which can also be written in probabilistic format as:

p(xk|y1:k−1) =
∫ relates to f︷ ︸︸ ︷

p(xk|xk−1) p(xk−1|y1:k−1)dxk−1 (5.5a)

=
L

∑
l=1

π
(l)
k−1

∫
p(xk|xk−1)N

(
xk−1;x(l)k−1|k−1,P

(l)
k−1|k−1

)
dxk−1︸ ︷︷ ︸

propagation of a Gaussian RV through f

(5.5b)

The integral in Eq. (5.5b) represents the propagation of a Gaussian RV through the nonlinear func-

tion f , which can be approximated using the UT. Applying L independent unscented transforms

yields Gaussian approximations N
(
·;x(l)k|k−1,P

(l)
k|k−1

)
for the integrals, and a mixture of Gaussians

approximation for the prior:

xk|y1:k−1 =
L

∑
l=1

π
(l)
k−1N

(
·;x(l)k|k−1,P

(l)
k|k−1

)
(5.5c)

The UT is used for each Gaussian ·(l) in the mixture, meaning that the total number of sigma

points required for approximation of the prior pdf is Nsig = L · (2nx + 1), if the symmetric sigma

point set is used for each Gaussian. Such a sigma point set captures up to the second order moment

of the GM input RV X = xk−1|y1:k−1 (see proof in appendix C.2), and would achieves second

order accuracy on mean estimate and first order accuracy on covariance estimate of the output RV

Z = f (X) = xk|y1:k−1 (prior pdf, approximated as a GM). In this sense, this algorithm achieves

the same order of accuracy as the generic UKF, however it is now able to 1) make use of a more
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complex prior and 2) represent more complex pdfs, i.e. multi-modal, as will be demonstrated later

with a numerical example.

Before finishing the derivation of this algorithm, it is important to notice that we are making the

strong assumption that each transformed Gaussian can itself be approximated as a Gaussian (same

assumption as in the UKF), yielding a GM for the output RV. In the cases of highly nonlinear

non-Gaussian systems this approximation might lead to erroneous results, thus the UT should be

replaced by a MC simulation, as proposed originally in the previous chapter of this dissertation.

However, in the cases studied here, where multi-modality arises because of lack of identifiability

in the system, making use of this assumption still yields acceptable results.

Measurement update step

Regarding the measurement update step, one must first estimate the joint probability pdf of the

prior and the predicted measurement, i.e., p(xk,yk|y1:k−1), which is performed by transforming the

prior through the measurement function h. This step can be performed in a similar fashion as for

the propagation step, i.e., use independent UTs for each Gaussian constituting the prior, leading to

a GM approximation of the pdf of interest as:{
xk

yk

}
|y1:k−1 ∼

L

∑
l=1

π
(l)
k−1N

(
·;

[
x(l)k|k−1

y(l)k|k−1

]
,

[
P(l)

k|k−1 Ψ
(l)
k

Ψ
(l),T
k S(l)k

])
(5.6)

using the same notations as in Eqs. (3.2).

The final step consists of computing the posterior pdf of the states, by conditioning the joint

pdf p(xk,yk|y1:k−1) over the measured value yk. Using the closure under conditioning property of
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the GM distribution one can derive the following measurement update equations:

π
(l)
k =

π
(l)
k−1N

(
yk;y(l)k|k−1,S

(l)
k

)
∑

L
j=1 π

( j)
k−1N

(
yk;y( j)

k|k−1,S
( j)
k

) (5.7a)

µ
(l)
k = x(l)k|k−1 +Ψ

(l)
k (S(l)k )−1(yk− y(l)k|k−1) (5.7b)

Σ
(l)
k = P(l)

k|k−1−Ψ
(l)
k (S(l)k )−1

Ψ
(l),T
k (5.7c)

Observing these equations one sees that for each Gaussian ·(l) in the mixture, the update equations

are exactly the same as for a Kalman filter, or a UKF. One equation is added to the set, and consists

of updating the weights π(l) of each Gaussian, proportionally to their likelihood.

Treatment of noise terms.

In the present study noise terms are restricted to being additive Gaussian, thus they are introduced

in the filtering equations in the exact same fashion as for a generic UKF, i.e., for each Gaussian

·(l) in the mixture, the process noise covariance Q is added to the prior covariance P(l)
k|k−1 at the

end of the propagation step, and the measurement noise covariance R is added to the covariance of

the predicted measurement S(l)k before performing the measurement update. This algorithm is also

able to handle non-Gaussian noise, as long as it can be represented as a mixture of Gaussians. For

more details on the subject, we refer the reader to e.g. [Faubel et al., 2009, Luo et al., 2010].

5.3.2 Comments on the algorithm and its computational time

The algorithm previously presented actually reduces to running several UKFs in parallel, and

weighting each UKF at each time step according to their likelihood (Eq. (5.7a)). It is thus very

easy to implement. This algorithm can be viewed as a trade-off between a UKF and a PF, in the

sense that if the mixture is composed of one single Gaussian, this algorithm reduces to a generic

UKF; if on the contrary the prior is composed of many Gaussians, each with an infinitely small
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prior covariance, the algorithm becomes very similar to a particle filter, where all particles (which

can be interpreted as degenerated Gaussians) are propagated and then weighted according to their

likelihood.

The overall computational time of this algorithm grows proportionally with nx ·L: it is thus pro-

portional to both the dimension of the system and the number of Gaussians in the mixture, which

governs the complexity of the pdfs of interest. If the algorithm requires highly complex Gaussian

mixtures, this algorithm will then not be beneficial over a particle filter in terms of computational

time. However, we have deduced from the previous numerical examples that if the parameters

of the system, or at least some of them, are identifiable, then making use of a simple Gaussian

prior for these parameters already yields accurate estimates. The idea in this new algorithm, when

used for parameter identification purposes, is to start with a simple Gaussian prior in some of the

dimensions, while using a more complex Gaussian mixture prior for the parameters that are harder

to learn. Hence the number of Gaussians in the mixture will not grow excessively with the overall

dimension of the system. A more detailed comparison of the running time for the PF vs. UKF GM

is provided for the following numerical example.

5.3.3 Numerical performance of the UKF GM

Linear 2-DOF locally identifiable system

The UKF GM is first tested on the 2-DOF locally identifiable system previously presented. The

chosen prior is composed of a mixture of 49 Gaussians, leading to a quite uniform prior over the

[θ1,θ2] space (left plot in Fig. 5.5); however these 49 Gaussians collapse into a single Gaussian

in the remaining dimensions. The idea here is that a much more complex prior (i.e., many more

Gaussians) would be necessary to uniformly explore the nx-dimensional space, which would lead

to a very computationally expensive algorithm. However, by only exploring uniformly the [θ1,θ2]

space, one is already able to infer the multi-modal posterior pdf, as shown in Fig. 5.5 (right plot).
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Figure 5.5: Performance of the UKF GM (using a mixture of 49 Gaussians) on the 2-DOF locally
identifiale system: prior and posterior pdfs of the stiffness parameters.

number of sigma points
solution 1

θtrue = [1 1]T
solution 2

θtrue = [2 0.5]T
running time

symmetric set
Nsig = L · (2nx +1) = 833 [1 0.97]T [1.98 0.49]T 257 sec

simplex spherical set
Nsig = L · (nx +2) = 490 [1 0.97]T [1.98 0.49]T 161 sec

Table 5.3: Performance comparison of the UKF GM with two sigma point sets on the 2-DOF
locally identifiable system: identification of the two modes of the posterior pdf, vs. computational
time. For both algorithms, the function f consists of a RK2 discretization scheme, and the additive
noise version of the UKF is used.

As previously mentioned, a tremendous advantage of the UKF GM over a Rao-Blackwellised

version of the PF is that it does not make any assumption on the functions f ,h, while the MLN-

RBPFrequires the functions to be linear in the parameters. In this specific case for instance, the

measurements were generated by running the forward problem using a 4th order Runge-Kutta

discretization scheme. However learning the parameters with the MLN-RBPFrequires writing the

function f using an Euler discretization scheme. When running the UKF GM on the contrary, we

were able to use a Runge-Kutta discretization scheme for the function f , i.e., the model used to

run the inverse problem is closer to the true system.

In Table 5.3, performance of this algorithm, using two different sigma point sets (the symmet-
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ric set and the simplex spherical set, both plotted on Fig. 3.3), is analyzed in terms of accuracy of

the posterior pdfs and running time, as done previously for the PF. One can see that the UKF GM

is able to quite accurately identify the two modes of the posterior pdf, and does so with a reduced

computational time compared to a PF (MLN-RBPF). This can be explained by looking more pre-

cisely at the computational effort required for each algorithm. For the PF, the main computational

load originates from evaluating f (x(i)k−1,θ
(i)), h(x(i)k ,θ (i)) as well as performing two linear measure-

ment update equations (to update the conditional pdf of the conditionally linear parameters), and

so for each particle. Regarding the UKF GM, for each of the Nsig sigma points, with Nsig = 833

for the symmetric set and Nsig = 490 for the simplex set, the main computational load originates

solely from evaluating f (x(i)k−1,θ
(i)), h(x(i)k ,θ (i)), then only L measurement updates are needed per

time step. This algorithm thus reduces computational time in two ways compared to the Rao-

Blackwellised version of the PF: reduce the number of particles/sigma points per time step and

reduce the computational time per particle/sigma point (for the same function f ).

The number of mixtures in the GM is chosen in advance by the user. This number should not

be chosen too small for two reasons, 1) having a complex prior enables a good coverage of the

prior parameter space, which is required in order to detect all possible parameter solutions and

2) we have observed in our experiments that if only few Gaussians are considered, the algorithm

tends to collapse as in a PF, i.e., one Gaussian will be given all the weight and the posterior pdf

will be Gaussian.

Duffing oscillator

The performance of the UKF GM was also assessed on the Duffing oscillator problem previously

considered, in the case where the nonlinearity is not fully excited. Recall that in this case, the UKF

is not able to accurately learn the nonlinear stiffness parameter α . Very importantly, comparing

behaviors of UKFs with different priors seems to indicate that the chosen prior has a non negligible
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Figure 5.6: Performance of the UKF GM (using a mixture of 49 Gaussians) on the SDOF Duffing
oscillator (low amplitude excitation): prior and posterior pdfs of the linear and nonlinear stiffness
parameters, θ1 ∝ klin and θ3 ∝ β .

influence on the posterior. It is thus important in this case to be able to accurately represent the

level of prior knowledge with a proper prior distribution. For this test we chose again as prior pdf a

mixture of 49 Gaussians, which explores quite uniformly the 2-dimensional [θ1,θ3] ∝ [k,α] space

(since the two stiffness parameters are correlated, the algorithm yields much better results when

this 2-dimensional space is explored uniformly, rather than just the θ3 dimension). Both the prior

and posterior distributions are shown in Fig. 5.6, demonstrating the ability of this new algorithm to

learn the posterior value of α in a more accurate way than a single UKF, while still yielding a large

variance for this parameter, indicating that measurements are not very informative in this case.

5.4 Concluding remarks

Overall this discussion demonstrates that on-line algorithms have excellent capabilities regarding

joint state/parameter estimation, even when the lack of identifiability of the system causes the
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posterior pdfs to be non-Gaussian, multi-modal. Furthermore, these algorithms make use at each

time step of independent evaluations of the functions f ,h at various points in the state space, they

are thus quite easily parallelizable (see e.g. [Brun et al., 2002] for PF parallelization), making them

very attractive for potential real-time monitoring of systems. This further enables fast decision

making procedures, very important in the case of structural health monitoring. Also, these first

posterior estimates could be used to speed up off-line methods such as MCMC schemes, by using

them as starting point or as importance densities in the case of importance sampling, thus yielding

more accurate estimates of the posterior pdfs.

The issue of parameter identifiability studied in this chapter will become of vital importance

for real life, large dimensional, high fidelity models since the number of unknown parameters

will surely increase, however the number of measurements might not be allowed to augment pro-

portionally, for practical reasons. A challenge in high fidelity models (finite element models for

instance), lies in the choice of the parameter vector to be learnt from data (engineering judgment

vs. sensitivity-based methods [Jang and Smyth, 2017] for instance), and then to assess the iden-

tifiability of this parameter vector. For the small scale examples presented therein, whose system

equations f and h were easy to write, one could assess the system’s identifiability properties prior

to learning, through the use of identifiability tests such as the DAISY software. Running iden-

tifiability tests on large dimensional problems, described by FE models, would be much more

challenging. Thus, for large scale systems, identifiability characteristics of the parameter vector

might not be known in advance, it is then of primordial importance to understand how on-line

algorithms perform in order to accurately analyze and understand the results of the identification

task.

Another issue that will surely arise when considering real life, possibly large dimensional sys-

tems, is a potential lack of knowledge of the excitation time series. Indeed, as mentioned in the

introduction of this dissertation, we have assumed up to now that the excitation time series e1:N
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could be measured. This assumption would be reasonable for seismic excitation, where only the

ground acceleration should be measured to know the force input at each DOF of the structure.

However, in many cases, the input force might be impossible to measure at each DOF of the struc-

ture, i.e., the time series e1:N that appears in the filtering equations will not be available during

monitoring. In the following chapter, this topic of unmeasured excitation is studied in the case

where the excitation e(t) is a stationary stochastic process, with a focus on wind excitation.
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Chapter 6

Identification of systems subjected to

unmeasured stochastic inputs

6.1 Filtering algorithms with unmeasured stochastic inputs: prob-

lem statement

6.1.1 Introduction of the excitation in the filtering equations

Using Bayesian filtering techniques on a physical model of the structure presents clear advantages

for structural health monitoring purposes (better understanding of possible cause and extent of

damage), however it shows a major drawback in the sense that the algorithm requires knowledge

of the excitation ek at each DOF, contrary to some statistical pattern recognition algorithms that

can make use of black-box output-only models of the structure and thus do not require knowledge

of the input, or at least not at each DOF. In order to use Bayesian filtering techniques, the excitation

must be introduced in the equations as either:

• the term ek in the process equation, i.e., the input excitation is known or measured at each
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DOF, or

• the term νk in the process equation, i.e., the input excitation is white noise.

The input white noise νk could be either Gaussian, then a generic UKF could be used in a

straightforward manner, or non-Gaussian, then more accurate results could be obtained using non-

Gaussian Kalman filters previously described in this thesis, or particle filters. However the white-

noise assumption is quite restrictive, and few inputs would actually fall in this category. On the

other hand, Bayesian filtering techniques have been shown to perform very well on MDOF struc-

tures subjected to earthquake loading, for which only measurement of the ground acceleration

ag(t) as well as reliable mass estimates are needed to obtain the input excitation at each DOF

(e(t) = −m · ag(t) is known). However, for many types of random loadings, the force will not be

the same at each DOF, and thus many measurements of the input would be required, rendering the

use of Bayesian filtering impossible. This is for instance the case with wind loading, as explained

in the following sections.

One can also mention at this stage that Bayesian filtering algorithms can also be used in certain

cases to perform joint state/input estimation, as presented for linear models in [Eftekhar Azam

et al., 2015] for instance. These methods require first to identify the physical model (parameters)

of the linear model, which can then be used in a second stage to perform joint estimation of the

dynamic states and the input, knowing the physical model of the structure. In the following how-

ever, we are solely concerned with performing accurate online monitoring of static parameters,

in possibly nonlinear systems, in the case where the excitations cannot be directly measured. As

will be discussed later, because of observability/identifiability constraints, it is not reasonable to

assume that one could simultaneously monitor/identify both the parameters of a system and the

excitation to which it is subjected.
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6.1.2 Introducing correlation in the noise terms of the filtering equations

At this stage it is useful to recall the system equations

xdyn
k = f (xdyn

k−1,θ ,ek−1,νk−1) (propagation equation) (6.1a)

yk = h(xdyn
k ,θ ,ηk) (measurement equation) (6.1b)

where we now relax the assumption of noise additivity, i.e., the noise terms can appear nonlin-

early in the equations. Both particle filtering and nonlinear Kalman filtering schemes are capable

of handling such systems. For the UKF, which will be used in the remainder of this chapter, the

noise terms are then treated similarly as the states, i.e., a set of sigma points is computed to capture

their moments and propagate them through the nonlinear functions f ,h. In its noise augmented

form, the UKF is also capable of handling noise terms that exhibit correlation one time step apart,

i.e., (E[νk−1ηT
k ] 6= 0). Lately, research in various engineering fields (control and automation, nav-

igation, geodetic observation and monitoring) has grown towards ways to tackle accurately more

complex noise terms:

• incorporating correlation at the same time step (E[νkηT
k ] 6= 0), see e.g. [Chang, 2014b, Saha

and Gustafsson, 2012] for an introduction in the particle filter and UKF respectively, and

• considering non-white noise, see e.g. [Masoumnezhad et al., 2014] for an introduction of

colored noise with given structure (time correlation in the noise is described by a 1st order

linear filter) and [Sui et al., 2015] for an introduction of noise described by an autoregressive

moving average (ARMA) model.

As will be explained later, this chapter also tackles the introduction of non-white noise into the

Bayesian framework, in order to take into account non-white and non measured excitations, more

specifically wind excitation, in this filtering framework. We will show how linear filters and au-

toregressive (AR) models can both be used for this purpose. Also, in the literature the noise terms
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are usually assumed additive, which will not be the case for our problems of interest, we then show

how this issue can be bypassed by augmenting the state vector with a vector of intermediate states.

6.1.3 Wind turbulence stochastic process

In this section we introduce our assumptions regarding modeling of the wind loading exciting the

structure whose states and parameters we are monitoring. We follow similar notations and def-

initions as in [Deodatis, 1996, Shinozuka and Deodatis, 1991]. Let υ(t) be a 1D-1V stationary

stochastic process (its mean and variance do not vary over time) with zero mean value and au-

tocorrelation function Rυ(τ) and two-sided power spectral density function Sυ(ω), with ω the

frequency in rad/s. Then the following relations hold:

E [υ(t)] = 0 (6.2a)

E
[
υ

2(t)
]
= Rυ(0) (6.2b)

E [υ(t + τ)υ(t)] = Rυ(τ) (6.2c)

Sυ(ω) =
1

2π

∫
∞

−∞

Rυ(τ)e−iωτdτ (6.2d)

Rυ(τ) =
∫

∞

−∞

Sυ(ω)eiωτdω (6.2e)

A white noise process has constant PSD and autocorrelation function R(τ) = σ2δ (τ), i.e., two

realizations at different time steps are uncorrelated.

Wind speed fluctuations are often modeled as a non-white stationary process (contrary to earth-

quake excitation for instance, which is clearly non stationary). Then one can adopt for instance

the Kaimal spectrum to represent the time/frequency correlation of the wind speed fluctuations

(around a mean value U(z), in m/s):

Sυ(ω) =
1
2

200
2π

u2
∗

z
U(z)

1(
1+50 ωz

2πU(z)

) 5
3

(6.3)

with z the height in meters from the surface of the ground, ω frequency in rad/s, u∗ the shear
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Figure 6.1: PSD Sυ(ω) and autocovariance function Rυ(τ) for wind turbulence following the
Kaimal spectrum with z = 25 m, U(z) = 43.52 m/s and z0 = 0.001266.

velocity of the flow, in m/s, which can be computed using the logarithmic law:

U(z) =
1
K

u∗ln
(

z
z0

)
(6.4)

where z0 is the roughness length, which depends on the surrounding area, and von Karman’s con-

stant K ' 0.4. Plots of the Kaimal PSD and associated autocorrelation function are shown in Fig.

6.1. The variance of the process can be computed as [Shinozuka and Deodatis, 1991]:

σ
2
υ = Rυ(0) = 6u2

∗ (6.5)

Note that in the definition of the spectrum, we can assume that z, the height in meters, and U(z),

the mean wind speed at height z can be measured quite accurately. Also, von Karman’s constant is

usually set to K ' 0.4 and we will keep this assumption. However, the roughness length z0, which

depends on the surrounding area, can be hard to measure/identify. For example, the table in Fig.

6.2a, reproduced from [Barthelmie et al., 1993], shows approximate values of z0 for each type of

surrounding area. Also, Fig. 6.2b shows plots of the Kaimal spectrum for several values of the

parameter z0 (from z0 = 0.03 (open area) to z0 = 0.25 (scattered obstacles)). From knowledge of

the surrounding area, one obtains only a crude estimate of the parameter z0; since this parameter
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Terrain description z0 (m)

Sea - open sea, fetch at least 5 km 0.0002
Smooth - mud flats, snow: little vegetation,
no obstacles 0.005

Open - flat terrain; grass, few isolated
obstacles 0.03

Roughly open - low crops; occasional large
obstacles 0.10

Rough - high crops; scattered obstacles 0.25
Very rough - orchards, bushes; numerous
obstacles 0.5

Closed - regular large obstacle coverage;
(suburb, forest) 1.0

Chaotic - city center with high- and low-rise
buildings > 2

(a) Roughness lenghts from terrain classification, repro-
duced from [Barthelmie et al., 1993].
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Figure 6.2: Variation of input parameter z0 and Kaimal spectrum depending on characteristics of
surrounding area, for fixed z = 35 m and U(z) = 45 m/s. Turbulence intensity συ

U(z) increases with
z0.

greatly affects the excitation, one can wonder how this uncertainty will affect identification of the

structural parameters. This question is tackled in detail later in this chapter, using uncertainty

propagation tools.

Wind turbulence processes at different points in space are also correlated (random field), which

has to be taken into account when modeling a structure with several DOFs. To take into account

this spatial correlation, one defines a coherence function γ(ξ ,ω) that depends on the spatial dis-

tance ξ between two points of interest [Deodatis, 1996]. One can then define a power spectral

density matrix (PSDM) that takes into account both the coherence function and the univariate

Kaimal spectrum. In this chapter, only 1V-1D processes are considered and applied to SDOFs

structures, both linear and nonlinear. However, the methods presented therein could be extended

to multivariate processes and MDOFs systems in the future.

The force applied to a structure due to wind speed is computed as:

ϕ(t) =
1
2

ρair ·Area ·C · (U(z)+υ)2 (6.6)
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Figure 6.3: Principle of the shaping filter to generate univariate non-white processes from a white
noise input.

Since the wind turbulence υ is non-white, one would need to obtain measurements of the wind

turbulence or the excitation at each DOF of interest in order to perform Bayesian inference. This

would become unfeasible for many systems. In the following section we present a way to create

an approximation of the wind turbulence that can be directly incorporated in a UKF.

6.2 Shaping filters: introducing non-white input processes in

the UKF

The idea here is to incorporate in the UKF a signal υ [ f ilter] that takes into account time/frequency

correlation of the input excitation process. This can be achieved using a so-called shaping filter (see

e.g. [Maybeck, 1979]), which takes as an input a white noise and outputs a colored noise (Fig. 6.3).

To generate an appropriate wind turbulence, one also wants to match the PSD or autocorrelation

function of the filter output to the target wind spectrum, here the Kaimal spectrum presented in the

previous section.
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6.2.1 Presentation of shaping filters

Continuous linear filter to fit the target PSD

We define a linear shaping filter in continuous time as:

q̇(t) = Aq(t)+σε(t) (6.7a)

υ
[ f ilter](t) =Cq(t) (6.7b)

where υ [ f ilter] is the shaping filter output, q(t) an intermediate state, ε(t) ∼ N (·;0,1) the white

noise input, thus the term σε(t) has constant PSD Se(ω) = σ2

2π
. The transfer function H

υ [ f ilter] and

PSD S
υ [ f ilter] of the filter output can be computed easily (linear filtering theory, see e.g. [Maybeck,

1979]):

H
υ [ f ilter](ω) =

L(υ [ f ilter])

L(ε)
=C( jωI−A)−1 (6.8a)

S
υ [ f ilter](ω) = |H

υ [ f ilter](ω)|2Se(ω) (6.8b)

One needs to create a filter so that S
υ [ f ilter](ω) matches the target Kaimal spectrum Sυ(ω). A

numerical example using a first order linear shaping filter is shown later in this chapter. The order

of the filter can be increased in order to obtain a better fit to the target spectrum, however as will

be explained later this will also lead to higher computational complexity of the UKF.

The filter must then be discretized in time to be integrated into the UKF. Since the filter is

linear, one can discretize exactly (time step dt, see e.g. [Maybeck, 1979]) as:

qk = Adqk−1 +σeεk−1 (6.9a)

υ
[ f ilter]
k =Cdqk (6.9b)

with εk ∼N (·;0,1) white noise (process noise term in the UKF equations) and

Ad = eAdt , Cd =C, σ
2
e =

∫ dt

τ=0
eAτ

σ
2eAT τdτ (6.10)
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AR model to fit the target autocorrelation function

In stochastic process theory, autoregressive models are also widely used to generate sample paths

of stochastic processes, using as an input a white noise discrete process. AR models can be written

as:

uk =
p

∑
l=1

αluk−l +σeεk (6.11)

where εk ∼N (·;0,1) and p is the order of the AR model. As done previously for the continuous

filter, one could compute the transfer function of this AR model, then choose the parameters α1:p

and σe to fit the PSD of the target wind turbulence process.

Alternatively, one can also use the Yule-Walker equations to fit the AR model to the target

spectrum. The Yule-Walker equations relate the autocorrelation function R(τ) of the AR process

to its parameters α1:p and σe:

R(1)
R(2)
R(3)

...
R(p)


=



R(0) R(1) R(2) · · · R(p−1)
R(1) R(0) R(1) · · · R(p−2)
R(2) R(1) R(0) · · · R(p−3)

...
...

... . . . ...
R(p−1) R(p−2) R(p−3) · · · R(0)





α1

α2

α3
...

αp


(6.12a)

σ
2
e = R(0)−

p

∑
l=1

αlR(l) (6.12b)

where R(l) is the autocorrelation function computed at τ = l · dt, dt being the lag between two

time steps k and k+1 (and R(0) is the variance of the process). Using these equations, parameters

a1:p and b0 can then be chosen so that the autocorrelation function of the AR process matches the

one of the target process, for l ≤ p, by setting R(l) = Rυ(l), l ≤ p and solving the Yule-Walker

equations to find α1:p and σe. Thus by increasing the order p of the AR model, one obtains a better

fit to the target autocorrelation function, as can be seen in the numerical example presented in the

next section.

In order to implement this method in the UKF, one defines the vector of intermediate states qk =
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uk uk−1 . . . uk−p

]T
and the approximated excitation as υ

[ f ilter]
k = uk =

[
1 0 . . . 0

]T
qk.

One can then directly write a discrete system similar to Eq. (6.9).

6.2.2 Numerical example

We here derive a linear 1st order shaping filter to match the Kaimal PSD (K = 0.4, z0 = 0.001266,

z = 25m, U(35m) = 45m/s). The PSD and autocorrelation function of a 1st order linear filter

q̇ =− 1
Tf

q+2π
Q f

T 2
f

ε (6.13a)

υ
[ f ilter] = q

can be computed as (ε ∼N (·;0,1)):

S
υ [ f ilter](ω) =

Q f

1+T 2
f ω2 (6.14a)

R
υ [ f ilter](τ) =

πQ f

Tf
exp(−|τ|

Tf
) (6.14b)

We decided here to choose Q f and Tf so that the value of the PSD at ω −→ 0 matches the Kaimal

PSD, and the variance of the output process (2
∫

∞

0 S(ω)dω =
πQ f
Tf

) matches the known true variance

6u2
∗. The fit is shown in Fig. 6.4a.

Similarly, we used the Yule-Walker equations to derive several AR models, of order 1, 4 and

50. Autocorrelation function fits are shown on Fig. 6.4b.

Also, in order to show the differences between time series generated using different methods,

a sample path of the target excitation υ was generated using the Kaimal spectrum and the spectral

representation method [Shinozuka and Deodatis, 1991], along with sample paths of the approxi-

mation processes υ [ f ilter], plotted on Fig. 6.4c. Those were generated by sampling independent

normal RVs (εk) and applying the discretized version of the filter (Eq. (6.9)). One can see that

the continuous filter (second plot from the top, red) overestimates the correlation between time
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Figure 6.4: Presentation of several shaping filters: PSD/autocorrelation fits and sample paths.

steps, the excitation looks less ”random”, with less high frequency content. On the contrary, the

AR(1) approximation is closer to a white noise, very random, which can also been seen in the

autocorrelation plot since the autocorrelation for the AR(1) decays very quickly to 0. When the

order of the AR model increases, the filter outputs resemble the target excitation more, and so does

the autocorrelation function.
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6.2.3 Implementation in the UKF

Recall that for both the continuous filter and the AR model, one ends up with a discrete filter that

approximates the time correlation of the input wind excitation:

qk = Adqk−1 +σeεk−1 (6.15a)

υ
[ f ilter]
k =Cdqk (6.15b)

with εk ∼ N (·;0,1) a Gaussian white noise process. The excitation can then be incorporated in

the UKF by defining the augmented state vector

zk =


xdyn

k

θ

qk

 (6.16)

The propagation equation for this new system is:

xdyn
k = f (xdyn

k−1,θ ,υ
[ f ilter]
k−1 ) = f (xdyn

k−1,θ ,Cdqk−1) (6.17a)

θk = θk−1 (6.17b)

qk = Adqk−1 +σeεk−1 (6.17c)

where υ
[ f ilter]
k is the excitation term (wind speed) and σeεk−1 represents the process noise term,

zero mean white noise, uncorrelated to the measurement noise. The measurement equation can

also be written as function of the augmented state:

yk = h(xdyn
k ,θk,υ

[ f ilter]
k )+ηk = h(xdyn

k ,θk,Cdqk)+ηk (6.18)

In this formulation, we consider additive measurement noise ηk; also, we consider that the process

noise consists solely of noise due to the random excitation, i.e., there is no modeling error. These

two assumptions could however be relaxed if needed. It is also important to highlight that in this

formulation, no wind time series is ever simulated using the shaping filter (since it would never

be able to match the actual unmeasured wind time series exciting the system); instead, we only
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use the shaping filter parameters Ad,σe,Cd to take into account in the UKF the time correlation

properties of the input excitation.

Since the state vector is augmented with the vector of intermediate states qk, the computational

complexity of the UKF (∝ Nsig = 2nz + 1) will increase significantly if many intermediate states

are added, i.e., if the shaping filter becomes very complex. For instance, an nth order continuous

filter will use nq = n intermediate states, as will an AR(n) model. Thus, one should find a trade-off

between a shaping filter complex enough to represent accurately the input excitation and keeping

the size of the q vector small enough to keep the UKF as fast as necessary (especially for real-time

monitoring). In the following sections, we show that with the use of a continuous first order filter,

as computed in the numerical example previously detailed, the approach already performs well in

identifying structural parameters in the case of wind excitation. Then we also briefly study the

effect of increasing the accuracy of the shaping filter fit (increased AR order for instance), and we

present a method to avoid large increase in computational time as an effect of the increase in the

size of the augmented state vector zk.

6.3 Results when the spectrum of the input random excitation

is fully known

6.3.1 Structure of interest: linear SDOF system

A SDOF water tank is represented as a 25 m cantilever tower, with weight 445 kN, lateral stiffness

700 kN/m and damping ratio 5%. Its equation of motion is written as:

ẍ(t)+2ξ ωnẋ(t)+ω
2
n x(t) =

1
m

ϕ(t) (6.19a)

ẍ(t)+2ξ ωnẋ(t)+ω
2
n x(t) =

1
m

(
1
2

ρair ·Area ·C · (U(z)+υ(t))2
)

(6.19b)
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with ρair,Area,C are the air density, area subjected to wind and drag coefficient respectively, ωn =√
k
m the fundamental frequency of the linear system and ξ = 0.05 its damping ratio.

A 300s (dt = 0.02s) wind time series is generated using the Kaimal spectrum and the spectral

representation method and used as an input to generate response data from this SDOF structure

(using a Runge-Kutta discretization scheme). 10% RMS noise is added to the displacement time

series, which is used as measurement for the identification task, performed using the UKF. In the

UKF, discretization for propagation of the dynamic states xdyn
k is also performed using a Runge-

Kutta scheme (function f in Eq. (6.17a)).

Two major issues should be tackled before undertaking structural identification with the UKF:

1) check identifiability of the parameter vector, as for any other system and 2) define a shaping

filter that estimates the time correlation properties of the input wind excitation, since the actual

excitation time series is not measured.

Identifiability, known excitation

For this linear system, identifiability of the parameter vector can be checked using the local identi-

fiability test described in [Grewal and Glover, 1976]. Note that identifiability tests assume that the

input is known, and there is no noise in the system.

Going back to the system of interest, the dynamics of the system can be written as

mẍ(t)+ cẋ(t)+ kx(t) = βϕ(t) (6.20)

where, for a wind excitation, β is proportional to the drag coefficient C, a constant that is quite

challenging to estimate for many structures. We then would like to estimate m, k, c and β , sup-

posing we know the excitation ϕ(t) (which is not exactly true since it is not measured, we only

create an approximation of it) and a series of measurements from the structure y1:N (we suppose
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displacement is measured). The system can be written in state-space format as:

d
dt

{
x

ẋ

}
=

[
0 1
− k

m − c
m

]{
x

ẋ

}
+

[
0
β

m

]
ϕ(t)

(
A =

[
0 1
− k

m − c
m

]
and B =

[
0
β

m

])
(6.21a)

y(t) =
[
1 0

]{x

ẋ

} (
C =

[
1 0

]
and D = 0

)
(6.21b)

The Markov parameter matrix of this system can be written as:

G(θ) =



D(θ)

C(θ)B(θ)

C(θ)A(θ)B(θ)
...

C(θ)A2nA−1(θ)B(θ)


=


0
0
b
m

−βc
m2

−β

m(
k
m −

c2

m2 )

 (6.21c)

and its Jacobian with respect to the parameter vector θ =
[
m k c β

]T
is:

dG(θ)

dθ
=

1
m


0 0 0 0
0 0 0 0
−β

m 0 0 1
2βc
m2 0 −β

m − c
m

β

m(
2k
m −

3c2

m2 ) −β

m
2βc
m2 −( k

m −
c2

m2 )

 (6.21d)

which has rank 3 < nθ = 4, thus this parameter vector is non-identifiable. It is logical since writing

the equations of motion using θ =
[
m k c β

]T
or θ =

[
m
2

k
2

c
2

β

2

]T
would yield the same

displacement time series, thus the 4 parameters of this system are non identifiable. However, if

we re-parameterize the system using k̄ = k
m , c̄ = c

m and φ = β

m , then the matrices of the state-space

formulation become:

A =

[
0 1
−k̄ −c̄

]
, B =

[
0
φ

]
, C =

[
1 0

]
, D = 0 (6.22a)

Then the Markov parameter matrix and its Jacobian with respect to the parameter vector θ =
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φ c̄ k̄

]T
can be computed as:

G(θ) =


0
0
φ

−c̄φ

−k̄φ + c̄2φ

 ,
dG(θ)

dθ
=


0 0 0
0 0 0
1 0 0
−c̄ −φ 0
−k̄+ c̄2 2c̄φ −φ

 (6.22b)

The Jacobian has rank 3 = nθ if all parameters are non-zero, thus this system is identifiable. Thus

for identifiabilty purposes of this system, either the mass or the drag coefficient C (and thus the

constant β ) should be known in advance (only the ratios k̄ = k
m , c̄= c

m and φ = β

m can be identified).

Performance comparison: assuming input excitation is white noise vs. shaping filter approx-

imation

The second issue in our learning problem is that the excitation is not measured, thus one does not

have access to the time series plotted in Fig. 6.5a. However, we assume that the characteristics

of this excitation are known, i.e. we know that it can be represented by a Kaimal spectrum, with

known coefficients K,z0,z,U(z). Thus one can follow the procedure previously described and

integrate a shaping filter in the UKF to represent the time correlations properties of the excitation.

The shaping filter used in this example consists of a first order continuous filter, as derived in the

numerical example previously studied, and it is integrated in the UKF following the procedure

explained in the preceding section.

For purposes of comparison with a generic UKF, we also tried to approximate the wind turbu-

lence with a zero-mean Gaussian white noise υ [wn]:

ẍ(t)+2ξ ωnẋ(t)+ω
2
n x(t) =

1
m

(
1
2

ρair ·Area ·C · (U(z)+υ
[wn])2

)
(6.23)

This equation can be easily discretized and the UKF can be used to recover the parameters, with-

out making use of a shaping filter. The white noise excitation υ [wn] (process noise in the UKF)
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appears nonlinearly in the equations, thus one needs to use the noise augmented version of the

UKF. However, this makes learning of the noise characteristics (mean, covariance) much more

complex, more specifically they cannot be learnt through adaptive algorithms presented for in-

stance in [Kontoroupi and Smyth, 2016] for the UKF and [Özkan et al., 2013] for the PF, since

these algorithms assume additivity of the noise terms. One must then choose the variance Q of this

process noise υ [wn] to be used in the UKF. We know the variance of the input continuous stationary

process from the Kaimal spectrum, used to generate the input data: σ2
υ = 6u2

∗, thus one can choose

to fit the variance, i.e. Q = 6u2
∗. For completeness we also ran another white noise filter where the

value of Q is decreased (Q = 6dt · u2
∗), which is more representative of the changes of amplitude

observed in the true excitation between two consecutive time steps. Fig. 6.5a shows the actual

excitation time series used to generate the data (assumed unknown when running the UKFs for

structural identification) and the amplitude of the two white noises previously defined.

Convergence of the static parameters are plotted on Fig. 6.5b for the three algorithms (used on

the same measurement time series y1:N):

• UKF assuming that υk is a Gaussian white noise, of variance 6u2
∗ (variance of the continuous

process), method 1, green line on plots,

• UKF assuming that υk is a Gaussian white noise, of variance dt ·6u2
∗, method 2, blue line on

plots,

• UKF that uses a 1st order linear shaping filter to represent the excitation υk, method 3, red

dashed line on plots1.

Clearly, the UKF that uses the shaping filter performs the best in recovering the parameters. It

is however slightly more computationally expensive since one state is added to the state vector (2

more sigma points). It might be possible to find a value of Q that would make the UKF with simple
1For this UKF, the prior mean for state q = υ [ f ilter] is set at 0, its prior variance is chosen as 6u2

?, variance of the
continuous process υ .
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Figure 6.5: Performance of different UKF schemes (with or without shaping filter to take into
account input correlation properties) on a SDOF linear system.

white noise perform well, however there is no easy way to learn that value, and learning it would

probably increase the computational time of the UKF. The shaping filter is a way to better represent

the excitation, as a non-white noise with certain characteristics fitted to the known spectrum of the

actual excitation. Those results are confirmed in the following section, looking at a nonlinear

SDOF.
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Figure 6.6: Pdf of error on identified parameters, i.e. θtrue− E [θ |y1:N ], for a SDOF Duffing
oscillator, when 1) a UKF is run assuming that the excitation is white noise (with variance dt ·6u2

?,
blue histogram) and 2) a shaping filter is used to aproximate the excitation (red histogram).

6.3.2 Extension to nonlinear systems: SDOF Duffing oscillator

Identifiability of parameters

A SDOF Duffing oscillator is considered here, with equation of motion:

ẍ(t)+
c
m

ẋ(t)+
k
m

x(t)+
α

m
x(t)3 =

β

m
ϕ(t) (6.24)

Since this equation is nonlinear, one cannot write this system as a linear state-space system and use

the local identifiability method previously mentioned. Instead, we verify local identifiability of the

parameters using the ORC method presented for instance in [Chatzis et al., 2015b]. In this method,

the state vector is augmented with the static parameters and observability of this augmented state

is studied. The method is explained for completeness in appendix E, and the Duffing oscillator

example is detailed. The ORC test yields positive result on the observability of this system, thus

the parameter vector θ =
[

k
m

c
m

α

m
β

m

]T
is identifiable.
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Performance of the shaping filter

We now compare methods 2 and 3, which performed the best on the linear system. 100 runs are

performed: for each run a new excitation and response of the structure is generated, and the 2

solvers are run on this incoming noisy data (10% RMS noise added to the measurements, and the

actual excitation time series is assumed unknown when running the UKF). The error between each

identified parameter (θ =
[

k
m

c
m

α

m
β

m

]T
) and its true value is computed for each run of the 2

solvers. Fig. 6.6 shows the histogram (approximated pdf) of this error. One can observe that our

method performs much better in recovering the stiffness parameters k
m and α

m , as well as the drag

coefficient term Area ·C, since the pdf of the errors is highly peaked around 0. Also, the UKF that

uses white noise υ
[wn]
k shows a bias in recovering the damping parameter c

m , and is less pronounced

for the method that uses the shaping filter.

6.3.3 Influence of the accuracy of the shaping filter fitting process

As previously mentioned, an important question that raises in this context is the question of the

order of the shaping filter, which will govern how well this shaping filter is capable of representing

the true input exciting the system. In this section we first study how the accuracy of the shaping

filter design process influences learning of the structural parameters. This is easily done by fitting

the autocorrelation function of the input using AR models of increasing order. First we go back

to the linear SDOF system and compare performance of the UKF in recovering the identifiable

parameter vector θ =
[

k
m

c
m Area ·C

]T
for several cases:

• UKF assuming that υk is a Gaussian white noise, of variance 6u2
∗ (variance of the continuous

process),

• UKF assuming that υk is a Gaussian white noise, of variance dt6u2
∗,

• UKF that uses a linear shaping filter to represent the excitation υk. We also vary the order of
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the fitted AR process.

Convergence of the static parameters are plotted on Fig. 6.7a. Again, the UKF that uses the shaping

filter performs the best in recovering the stiffness and drag coefficient parameters. The damping

parameter is more challenging to identify, but it appears that increasing the order of the AR shaping

filter increases accuracy of the identification procedure.

Those results are further confirmed by looking back at the SDOF Duffing oscillator, for which

solvers 2 and 3 previously mentioned are compared. As before, 100 runs are performed and for

each run, the error between each identified parameter (θ =
[

k
m

c
m

α

m
β

m

]T
) and its true value is

computed. Fig. 6.7b shows the histogram of this error. Once again, using a shaping filter evidently

helps the identification procedure: one can observe that the UKF with shaping filter performs much

better in recovering the stiffness parameters k
m and α

m , as well as the drag coefficient term Area ·C,

since the pdf of the errors is highly peaked around 0. Identification of the damping parameter

is again more challenging, but one can observe on Fig. 6.7c that increasing the order of the AR

shaping filter leads to much better approximations of the damping parameter.

As previously mentioned, increasing the order p of the AR model fit also increases the size

of the state vector, and thus the number of sigma points and the computational complexity of

the overall filtering algorithm. However, it is possible to bypass this issue by making use of the

marginalized UT, as presented in chapter 4, section 4.3.1. The augmented state vector is partitioned

as:

ak−1 =


xdyn

k−1

θk−1

υ
[ f ilter]
k−1

 and bk−1 =


υ
[ f ilter]
k−2

...

υ
[ f ilter]
k−p

 (6.25)

Then the propagation equation for the augmented system, which includes an AR shaping filter of
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order p with known coefficients {α1:p,σe} can be written as:

zk =



xdyn
k

θk

υ
[ f ilter]
k

υ
[ f ilter]
k−1

υ
[ f ilter]
k−2

...

υ
[ f ilter]
k−p+1


=



f (xdyn
k−1,θ ,υ

[ f ilter]
k−1 )

θk−1

α1υ
[ f ilter]
k−1

υ
[ f ilter]
k−1

0
...
0

︸ ︷︷ ︸
ϕ(ak−1)

+

G︷ ︸︸ ︷

0 0 · · · 0
0 0 · · · 0

α2 α3 · · · αp

0 0 · · · 0
1 0 · · · 0
... . . . . . . ...
0 · · · 1 0



bk−1︷ ︸︸ ︷
υ
[ f ilter]
k−2

υ
[ f ilter]
k−3

...

υ
[ f ilter]
k−p

+



0
0

σeεk−1

0
0
...
0


(6.26)

and the measurement equation as:

yk = h(xdyn
k ,θk,υ

[ f ilter]
k )︸ ︷︷ ︸

ϕ(ak)

+

G︷︸︸︷
0 ·bk +ηk (6.27)

Both propagation and measurement equations are linear in subvector b, and the principle of marginal-

ization can be used, i.e., integration over p(a) is performed using the UT while integration over

p(b|a) is performed analytically, which reduces the number of sigma points and thus the number

of function evaluations. Furthermore, one can see that in this specific case the Jacobians G are

independent of the nonlinear subvector a, thus evaluation of G must be performed only once per

time step (instead of once per sigma point). Thus in this case the marginalization procedure will

quite surely lead to an overall reduction in computational time.

Fig. 6.8 shows a comparison of computational time and error on identified parameters when

performing identification with a generic UKF vs. the UKF that uses this marginalization method

(named CLG-UKF) on the SDOF linear system previously studied. The CLG-UKF performs al-

most identically to the generic UKF in terms of accuracy, i.e., increasing the order of the AR filter

increases accuracy in identifying the damping parameters for both filters. The CLG-UKF however

runs much faster, due to the fact that its number of sigma points does not increase as the order of
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Figure 6.8: Performance of the UKF that uses the UT for conditionally linear equations.

the AR shaping filter increases.

Finally, it is good to mention here that since the equations of the UKF are nonlinear, it would

be possible to use a nonlinear shaping filter to represent the excitation. This could afford access

to more accurate representations of the excitations, without necessarily increasing the size of the

augmented state vector q.
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6.3.4 Partial conclusion.

Assuming that only some characteristics (spectrum) of the input exciting the system are known

(the actual excitation time series is not measured), we are able to identify reasonably accurately

structural parameters of a SDOF system, as long as the parameter vector is identifiable. This

is performed using a shaping filter that takes as input a white noise and outputs a colored noise

with given characteristics, which can be matched to the target spectrum. This shaping filter can

be very easily integrated to the UKF formulation, but it increases its computational time. In the

previous section, we have assumed that 1) the true excitation could be exactly represented by a

Kaimal spectrum and 2) all the parameters of this spectrum are exactly known, which are two

very strong assumptions. Assumption 1) can be relaxed by observing that when fitting the shaping

filter to the spectrum/auto-correlation function, only some characteristics of the spectrum are used

to obtain an approximation. When considering an AR model for instance, we only fit the auto-

correlation function up to τ ≤ p ·dt, thus only knowledge of these values are required (and could be

obtained through measurements), not the full spectrum/auto-correlation function. In the following

section, we provide a method to relax assumption 2): i.e., we assume that the true excitation

can be represented through the Kaimal spectrum, but one of its parameters is not known exactly

(it is random). We then study how this uncertainty affects learning of the identifiable structural

parameters.
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6.4 What if the spectrum of the excitation is not fully known?

6.4.1 Can one learn both parameters representing the input excitation as

well as structural parameters from the data?

We consider now the case where the spectrum of the wind turbulence excitation is not fully known.

Would it be possible to use the displacement measurement time series to learn more about the

excitation?

Going back to a Duffing oscillator, the continuous time augmented system used in the UKF

with shaping filter can be written as:

ẍ(t)+
c
m

ẋ(t)+
k
m

x(t)+
α

m
x(t)3 =

β

m
(U(z)+υ(t))2 (6.28a)

υ̇ = Aυ(t)+σε(t) (6.28b)

where e(t)∼N (·;0,1). Parameters U(z), A and σ represent (indirectly) the wind turbulence pro-

cess. We now would like to estimate these parameters along with the structural parameters, i.e., the

full parameter vector is θ =
[

k
m

c
m

α

m
β

m U(z) A σ

]T
. To study observability/identifiability

of this system, we consider ε(t) ∼N (·;0,1) as a known input (which is not strictly correct since

it is a random input). Using the ORC criterion previously studied, one finds out that this system is

unobservable, even though we make the strong assumption that ε(t) is known.

As previously stated, the mean speed value U(z) is probably the easiest parameter to measure,

thus we then consider it known and reduce the parameter vector to θ =
[

k
m

c
m

α

m
β

m A σ

]T
.

In this case, the observability test yields positive results: the system is observable and parameters

are identifiable, when we consider ε(t) known/measured. Since ε(t) is actually random, its mean

and covariance are known, but its actual time series is unknown, we need to double-check this

identifiabilty result, using for instance joint estimation with the UKF. We ran two slightly different

algorithms: in one case we define the vector of static parameters as θ =
[

k
m

c
m

α

m
β

m A σ

]T
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Figure 6.9: Parameter convergence when both structural and wind turbulence input parameters
are unknown (blue line: the state vector is augmented with the unknown excitation parameters, red
line: the adaptive UKF is used for learning of the covariance term).

(i.e., parameter σ is treated as any other parameter). In the second algorithm, we use the adaptive

UKF derived in [Kontoroupi and Smyth, 2016] to learn the process noise covariance σ2 instead.

Results (Fig. 6.9) show poor results with both algorithms, which seems to imply that learning all

these parameters is actually unfeasible in this case.

Note also that A and σ are only the parameters of a simple (linear) representation of the input,

which is actually much more complex (Kaimal spectrum); depending on the method used to fit

the shaping filter to the Kaimal spectrum, it might be difficult to learn specific parameters of the

spectrum from values of A and σ .

6.4.2 Propagating uncertainties on input parameters to identified structural

parameters

The idea here is that if one cannot learn exactly the parameters describing the input, then one

can consider them as random and study how this uncertainty affects identification of the structural

parameters, through uncertainty propagation schemes.

In uncertainty propagation (UP), one studies how uncertainty on an input parameter q, treated

as a RV, affects a certain quantity of interest (QoI). One thus needs a mathematical model, which
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takes as an input a sample of the RV q(i) and outputs a corresponding value of the QoI, QoI(i).

Uncertainty propagation is usually performed to study the behavior of a structural system when the

structural parameters/excitation parameters are random, i.e., q← structural/excitation parameters

and QoI← response (displacement, acceleration) of the system.

Here instead we use UP to study how uncertainty in the input excitation parameters affect

identification of the structural parameters, i.e., q← input excitation parameters and QoI← pdf or

moments of p(θ |y1:N), obtained with the UKF or any other identification method. Our mathemat-

ical model consists then of running a UKF or any other identification method. One would need to

use non-intrusive uncertainty quantification methods, such as Monte Carlo simulation (Fig. 6.10)

or collocation methods, which both consist of running the mathematical model for several values

of q(i), chosen either randomly or deterministically.

We also see that this approach shows an added complexity since the output QoI is not a single

value, but a pdf p(θ |y1:N), or at least a few moments of this pdf. As will be explained later, we

tackle this difficulty by marginalizing over the input RV to obtain the pdf or moments of the QoI

(Fig. 6.11). We first explain our method using MC simulation, probably the most straightforward

way to perform UP, then we show that similar results can be obtained with much less computational

complexity by making use of the unscented transform.
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Uncertainty propagation through MC simulation.

The most straightforward way to perform UP is through MC simulation: sample a value q(i) of the

random input parameter from its known pdf, run the mathematical model to obtain a value of the

output quantity of interest QoI(i) (scheme in Fig. 6.10).

Going back to our system of interest, the mean wind speed U(z) can be easily measured, so

we focus our attention here on the input parameter z0, the roughness length, which depends on the

surroundings but is challenging to measure or identify exactly. We will consider this as the random

input to our UP scheme, and assign it a lognormal pdf whose parameters were chosen using the

table in Fig. 6.2a (the structure of interest is in an open terrain with some obstacles), as shown in

Fig. 6.10. It is important to recall at this stage that we are not trying to learn this parameter z0,

but we want to study how uncertainty in this parameter affects identification of unknown structural

parameters (thus the prior pdf p(z0) is known, here lognormal). One MC run then goes as follows:

1. sample z(i)0 from the known pdf p(z0),

2. fit a linear continuous shaping filter, as done in the previous section,

3. run the UKF to obtain the two QoIs E
[
θ |y1:N ,z

(i)
0

]
and Cov

(
θ |y1:N ,z

(i)
0

)
.
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Note here that the measurement time series y1:N is the same for each run, only the value of z0

changes for each MC run.

Marginalization over p(z0).

Using the procedure previously described, one can estimate the pdf of each of the two QoIs (see

Fig. 6.12a for the pdf of QoI E [θ |y1:N ,z0]). However, our final goal is to estimate the posterior pdf

p(θ |y1:N), which can be obtained by marginalizing out the random variable z0:

p(θ |y1:N) =
∫

z0

p(θ |y1:N ,z0) p(z0)dz0 (6.29)

Looking only at the first two moments of the pdf, marginalization over p(z0) can be performed

using the laws of total expectation and total variance. More explicitly, using results from the

Monte Carlo simulation:

E [θ |y1:N ] = Ep(z0) [E [θ |y1:N ,z0]] (6.30a)

=
1

Nmc

Nmc

∑
i=1

E
[
θ |y1:N ,z

(i)
0

]
︸ ︷︷ ︸

output of MC run (UKF) i︸ ︷︷ ︸
averaging over all MC runs = marginalization over p(z0)

(6.30b)

Cov(θ |y1:N) =Ep(z0) [Cov(θ |y1:N ,z0)]+Covp(z0) (E [θ |y1:N ,z0]) (6.30c)

=
1

Nmc

Nmc

∑
i=1

Cov
(

θ |y1:N ,z
(i)
0

)
+

1
Nmc−1

Nmc

∑
i=1

(
E
[
θ |y1:N ,z

(i)
0

]
−E [θ |y1:N ]

)(
E
[
θ |y1:N ,z

(i)
0

]
−E [θ |y1:N ]

)T

(6.30d)

Results are shown in Fig. 6.12b: parameters k
m and Area ·C are identified with less than 5% error

and variance is quite low. Damping parameters are harder to learn (about 16% error) but the mean

± standard deviation still contains the true value. Only for the nonlinear parameter α

m the mean ±
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expected value (over p(z0)) of the
identified variances (%)

variance (over p(z0)) of the identified
means (%)

k/m 98.32 1.68
c/m 95.04 4.96
α/m 97.28 2.72

Area ·C 76.26 23.74

Table 6.1: Percentage of total variance Var(θ |y1:N) due to Ep(z0) [Var(θ |y1:N ,z0)] vs.
Varp(z0)(E [θ |y1:N ,z0)])

one standard deviation does not contain the true value, and is approximated with about 8% error.

This is due in part to the fact that the Duffing oscillator is not fully excited, and also because the

shaping filter approximating the excitation is very simple (linear).

The formula for the variance is the sum of two terms: the first term represents the average over

p(z0) of the identified variances (directly related to the process/measurement noise terms in the

UKF), which is not taken into account if one looks only at the pdfs in Fig. 6.12a (thus these pdfs

should be treated carefully). The second term represents the variance over p(z0) of the identified

means. Table 6.1 shows the percentage of the total variance due to each of these two terms. For the

first three parameters, the first term, related to the noise components of the UKF, clearly dominates.

Note here that the process noise in the UKF consists of the shaping filter noise term, it is thus highly

dependent on the choice of z0; thus even though the first term dominates here, it does not mean that

uncertainty on z0 has no effect on the identification. For the fourth parameter Area ·C ∝
β

m , which is

directly related to the excitation (scaling factor), uncertainty around z0 clearly affects identification

through the second term of the total variance. Looking at the correlation plots (Fig. 6.13c, plot of

E [Area ·C|y1:N ,z0] as a function of z0), one can observe that these two parameters are negatively

correlated, which makes sense since both have a similar effect on scaling the excitation.

As previously demonstrated in chapter 3, the Gaussianity assumption used in the UKF is actu-

ally acceptable, as long as the system parameters are identifiable and the noise terms are Gaussian.

Thus one can assume in this case: p
(

θ |y1:N ,z
(i)
0

)
'N

(
θ ; µ(i),C(i)

)
with µ(i) and C(i) the outputs
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of UKF #i. Then the full posterior can be approximated as a mixture of Gaussians:

p(θ |y1:N) =
∫

z0

p(θ |y1:N ,z0) p(z0)dz0 (6.31a)

=
∫

z0

N
(

θ ;E
[
θ |y1:N ,z

(i)
0

]
,Cov

(
θ |y1:N ,z

(i)
0

)) 1
Nmc

δ (z0− z(i)0 )dz0 (6.31b)

=
1

Nmc

Nmc

∑
i=1
N
(

θ ;E
[
θ |y1:N ,z

(i)
0

]
,Cov

(
θ |y1:N ,z

(i)
0

))
(6.31c)

Plots of the posterior distributions (as a mixture of 600 Gaussians) are shown in Fig. 6.12c.

We thus have a way to compute the moments and approximate the distribution p(θ |y1:N), for

one specific measurement time series y1:N , even though we are not measuring the excitation time

series and one parameter that characterizes the input excitation spectrum is uncertain. Clearly,

uncertainty propagation is unavoidable for such cases where so many quantities are unknown.

However, this requires many runs of the UKF (here we used 600) for the MC simulation. We show

in the next section that almost similar results can be obtained in this case using only 3 runs, making

use of the unscented transform.

Moment propagation through the UT

The previous simulation enabled us to find the moments of the identified parameters by marginal-

izing over the random input parameter z0. However it requires a large number of runs, each of

them consisting of running a UKF over a relatively long time series, for the MC simulation. If

one is mostly interested in the first two moments (Fig. 6.12b), then we propose here a much faster

procedure, based on the unscented transform.

Recall that the unscented transform (UT) aims at computing the moments of an output RV

Z = g(X), when the moments of the input RV X are known. This concept is used in the laws of

total expectation and covariance, setting X = z0 and Z = g(X) = E [θ |y1:N ,z0] or Cov(θ |y1:N ,z0).

Thus one can use the unscented transform to compute Eqs. (6.30a), (6.30c). Thus, to obtain the

first and second order moments of p(θ |y1:N) (Eqs. (6.30a), (6.30c)) when using the UT instead of
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Figure 6.12: Results of Monte Carlo simulation to study propagation of uncertainty on z0 to
identification of structural parameters.
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Figure 6.13: Application of the unscented transform to propagate uncertainty on z0 to identifica-
tion of structural parameters.

a MC simulation, the following steps are proposed:

1. Generate the sigma points {Z(i)
0 ,W (i)

m,c}1 that capture the known moments of the input RV z0,

2. Propagate them through the nonlinear function, i.e., for each sigma point, i = 1 : Nsig do:

• fit a shaping filter to the spectrum with parameter Z(i)
0 , and

• run a UKF to compute E
[
θ |y1:N ,Z

(i)
0

]
and Cov

(
θ |y1:N ,Z

(i)
0

)
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3. Use the laws of total expectation and covariance to average over the sigma points as:

E [θ |y1:N ] =Ep(z0) [E [θ |y1:N ,z0]] (6.32a)

=
Nsig

∑
i=1

W (i)
m E

[
θ |y1:N ,Z

(i)
0

]
(6.32b)

Cov(θ |y1:N) =Ep(z0) [Cov(θ |y1:N ,z0)]+Covp(z0) (E [θ |y1:N ,z0]) (6.32c)

=
Nsig

∑
i=1

W (i)
m Cov

(
θ |y1:N ,Z

(i)
0

)
+

Nsig

∑
i=1

W (i)
c

(
E
[
θ |y1:N ,Z

(i)
0

]
−E [θ |y1:N ]

)(
E
[
θ |y1:N ,Z

(i)
0

]
−E [θ |y1:N ]

)T

(6.32d)

Here note that the unscented transform used to average over p(z0) is completely independent

from the UKF part, which also uses the unscented transform. Actually, any system identifica-

tion tool could be used in place of the UKF, as long as it outputs the moments E
[
θ |y1:N ,Z

(i)
0

]
and

Cov
(

θ |y1:N ,Z
(i)
0

)
.

This method is applied on the same measurement data used previously for the MC simulation,

using a fourth order sigma point set (comments on the order of accuracy are given later). Estimates

of the moments of θ |y1:N using this method are shown on Fig. 6.13b: they are actually very similar

to the ones found with the MC simulation, however only 3 UKF runs were needed here, while 600

were used for the MC simulation.

A discussion on the order of accuracy of the UT.

At this stage, it is good to recall that the level of accuracy that can be achieved using the UT

depends on two properties (see discussion in chapter 3):

1Wm is used for computations of means, Wc for computations of covariances, they sometimes differ, depending on
the chosen sigma point set.
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• the level of nonlinearity of the function g, and

• how many moments of the input RV X are matched by the sigma point set.

Going back to our simulation, the fourth order set used therein captures the skewness and kurtosis

of the input RV X = z0 (Fig. 6.13a shows this set of 3 sigma points, see e.g. [Julier, 1998] and

appendix for details on the derivation of the set).

In our numerical experiment, the function g is very complex since it requires running a UKF.

By running a UKF, for a given value of z0, we actually make use indirectly of two functions:

g1 : z0−→ E [θ |y1:N ,z0] and g2 : z0−→Cov(θ |y1:N ,z0), i.e., one function evaluates the mean of the

parameters knowing z0,y1:N , the other evaluates the covariance. Assessing the level of nonlinearity

of these two functions is probably unfeasible, but one can get an idea by performing simulations

for different values of z0 and plot the results, for instance plot E [θ |y1:N ,z0] as a function of z0.

We used our previous MC simulations to create these plots for both functions g1,2, shown in Fig.

6.13c: it appears that g1,2 could be approximated as a quadratic functions, for the range of z0 of

interest for our problem at least. Thus a UT that achieves second order accuracy seems reasonable

in this case. These theoretical considerations explain why our UT scheme, with a fourth order set,

achieves very accurate results compared to a MC simulation.

To show the importance of carefully designing the sigma point set used to perform UP, we also

applied a symmetric sigma point set, which achieves 2nd order accuracy on the mean but only first

order of accuracy on covariance estimation. Errors between the MC simulation and each of the two

UT simulations are given in Table 6.2. First, the 4th order set consistently outputs better estimates

(in better accordance with the MC simulation) than the less accurate symmetric set. Regarding

parameters k
m ,

c
m ,

α

m , results on the mean estimates are actually very good for both UT sets (always

less than 1% error compared to MC simulation), likewise for the variance estimates. However,

recall for these three parameters, the total variance is almost equal to the expected value (over

p(z0)) of the identified variances (outputted by the UKF), i.e. the first term in the law of total
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4th order (skewed) set symmetric set
error (%) with MC simulation for expected value of identified parameters

k/m 0.0064 0.0255
c/m -0.0856 -0.4237
α/m -0.0399 -0.1394

Area ·C 0.0099 0.1465
error (%) with MC simulation for standard deviation of identified parameters

k/m 0.2965 0.4913
c/m 0.8406 1.8889
α/m 0.7731 1.7050

Area ·C 3.0058 7.8584

Table 6.2: Error between the MC simulation and each of the two UT simulations: 4th order sigma
point set vs. symmetric set.

covariance. Thus in these cases, the UT is used to compute an expectation over p(z0), and thus

second order accuracy is achieved with both sets (the 4th order set actually achieves 4th order

accuracy on computation of expectations). However, for parameter Area ·C, the second term in the

law of total covariance, (i.e., the variance (over p(z0)) of the identified means) has a non negligible

effect on the total covariance. For this term, only first order accuracy is achieved with a symmetric

set, which explains the larger error (8% error on the standard deviation) observed for this set on

parameter Area ·C. The more accurate 4th order set gives only 3% error on the standard deviation

of this parameter.

The UT seems to be a good alternative to MC simulations for uncertainty propagation, since

it requires fewer runs of the mathematical model. It was already used for instance in [Rocco San-

severino and Ramirez-Marquez, 2014] for UP in reliability analysis. Here however we add a level

of complexity since our QoI is now a pdf, which necessitates the use of a marginalization scheme

(through laws of total expectation/covariance) to marginalize over the input parameter. Further-

more in this dissertation we have strongly insisted on the order of accuracy of the UT, which in

many cases will strongly affect the results of an uncertainty propagation scheme, especially re-

garding estimation of variances. For our numerical simulations, we have given both theoretical
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and numerical proof that the UT, with a 4th order set, will achieve very good accuracy. Note how-

ever that this level of accuracy might not be easily achievable for any scenario (i.e. effect of another

input parameter than z0 or even different input process): one might need a more accurate sigma

point set, depending on the effect of the input random parameter q on the moments of θ |y1:N ,q

(nonlinear effects). This can be studied as previously described: either comparison with MC re-

sults or plots of Z = g(X) to understand the level of nonlinearity of the function and thus choose

an accurate set of sigma points. One could also run the simulation with at least two different sigma

point sets (as previously shown in the example) to check convergence of the results, especially the

variance estimates.

6.5 Concluding remarks

In this final chapter we have presented a method to perform identification of structural parameters

on nonlinear SDOF systems subjected to wind excitation, without having access to measurements

from the excitation itself during monitoring. The method is based on the introduction in the UKF

of a shaping filter, designed to capture the main correlation properties of the wind excitation,

modeled as a stochastic process with known PSD/autocorrelation function. Since the shaping filter

is only an approximation of the actual input, some modeling error is necessarily introduced in the

system equations, and one can wonder how to account for this uncertainty in the posterior pdfs

- maybe by performing several runs with various shaping filter fits. More importantly, we are

now working on extending this method to multi-degree-of-freedom systems, which would require

taking into consideration both spatial and time correlation of the input stationary process. Finally,

it is important to note that this method could be applied to other types of stationary stochastic

excitations (Pierson-Moskowitz spectrum for ocean waves for instance). Such developments would

render filtering methods for damage detection applicable to a wide variety of systems.
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Finally, we also acknowledge that it would not be reasonable to assume that the spectrum of

the input excitation is exactly known. We thus present a method, based on uncertainty propagation

tools, to study the effect of having uncertainties in the input parameters on identification of struc-

tural parameters. We also show that the unscented transform can be used to perform uncertainty

propagation and marginalization over the random input, at a much lower computational cost than

Monte Carlo simulations. Again, this method is very generic and could be applied to any input

parameter that is uncertain (but whose pdf or moments are known) and cannot be learnt due to

identifiability issues. When so many parameters/variables of a system are unknown (recall that we

are not measuring the input excitation), making use of accurate probabilistic methods (Bayesian

filtering) and uncertainty propagation tools is imperative.
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Chapter 7

Conclusions

This dissertation has explored several topics related to the use of online Bayesian filtering algo-

rithms for damage detection and characterization in structural systems.

As detailed in the second part of this thesis, Bayesian inference methods are very attractive for

damage identification and characterization due to their ability to take into account uncertainties in

the system and measurements. We have presented a method to take into account stochastic input

excitations which cannot be measured during monitoring, by introducing in the filtering equations

knowledge of the spectral properties characterizing the input process. We have also demonstrated

that these online Bayesian filtering methods can also handle ill-conditioned problems, where not

all parameters can be learnt from the available noisy data, a problem which will surely arise when

considering large dimensional nonlinear systems.

A major challenge regarding these online Bayesian filtering algorithms lies in achieving good

accuracy for large dimensional, nonlinear, potentially non-Gaussian systems. In the first part of

this dissertation, both particle and nonlinear Kalman filtering techniques were reviewed in depth,

focusing on their advantages and drawbacks with respect to damage detection in nonlinear sys-

tems. One possible way to increase accuracy and efficiency of online Bayesian algorithms for

large dimensional systems is to build upon nonlinear Kalman filtering techniques, which are very
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computationally efficient, and relax their Gaussianity assumption. We thus show how one can cou-

ple non-Gaussian filters and higher order moment propagation schemes to enhance the capabilities

of nonlinear Kalman filters to different underlying probability distributions. On the other hand,

particle filtering algorithms are sampling-weighting schemes which are theoretically accurate, i.e.,

lead to the true posterior pdf, for any nonlinear non-Gaussian system. However, they suffer from

the so-called curse of dimensionality, and their computational complexity thus increases exponen-

tially with the dimension of the system. An algorithmic enhancement based on the concept of

Rao-Blackwellisation is used to mitigate this issue, yielding an algorithm which is particularly

well-suited for damage detection purposes in structural systems with localized nonlinearities. It

can be noted here that the concept of a curse of dimensionality is by no means restricted to particle

filtering: it refers to several phenomena which arise when dealing with large dimensional spaces

(optimization schemes, sampling. . . ). In [Olivier and Smyth, 2016] for instance, a stochastic pro-

cess simulation method based on the Karhunen-Loève decomposition is studied, which requires

sampling from a multivariate Kernel density estimate. Again, it can be shown that using a dimen-

sion reduction approach in this context can enhance performance of the method.

Even though this dissertation has focused on applications to structural systems, these methods

can potentially find a wider variety of applications including, but not restricted to, control and di-

agnostic of mechanical systems, state estimation of chemical processes, traffic or pollution spread,

or improved modeling of biomechanical systems.

The work presented in this dissertation also raises questions which could provide a base for

future work. Few points are already mentioned in the core of the thesis, such as studying applica-

bility of the so-called block particle filter for parameter estimation tasks, or develop a multivariate

version of the method presented in chapter 6 to take into account unmeasured inputs in the filter-

ing procedure. Another topic of interest for SHM which has received limited attention up to now

is the prognosis step of the SHM process. When using model-based methods such as the ones
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presented in this dissertation, a model of the damaged structure can be constructed to study fu-

ture behavior. The prediction task would most likely involve uncertainty propagation procedures,

which are known to be quite cumbersome for large dimensional parameter spaces. Making use

of the unscented transform, as mentioned in the last section of this dissertation, possibly associ-

ated with surrogate models, could potentially be beneficial for these tasks. Finally, another topic

which is receiving a lot of attention lately, for instance in the finite element field, is the notion of

model class selection, or assessment, see e.g. [Beck and Yuen, 2004, Muto and Beck, 2008], where

one tries to select the ”best” representation of the system among a set of given models, where the

term ”best” should incorporate both the notion of accurately fitting available data and allowing

for prediction of future unseen data (i.e., avoid over-fitting). It has been shown that this model

class selection principle can be implemented using the UKF [Kontoroupi and Smyth, 2017], thus

it could be interesting to integrate this idea with the UKF for finite element models presented in

chapter 4 of this dissertation, which would enable assessment of different finite element models

(geometries, boundary conditions and so on) based on available measurements. This type of meth-

ods would certainly find applications in both monitoring and improved modeling in various fields

of engineering and science.
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Graciela González-Farı́as, J. Armando Domı́nguez-Molina, and Arjun K. Gupta. The closed skew-normal distribu-
tion. In Skew-elliptical distributions and their applications: a journey beyond normality, chapter 2. Chapman &
Hall/CRC, Boca Raton, 2004.

P. L. Green and K. Worden. Bayesian and Markov chain Monte Carlo methods for identifying nonlinear systems in
the presence of uncertainty. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical
and Engineering Sciences, 373:20140405, 2015. doi:10.1098/rsta.2014.0405.

Peter L. Green. Bayesian system identification of a nonlinear dynamical system using a novel variant of Simulated
Annealing. Mechanical Systems and Signal Processing, 52-53(1):133 – 146, 2015. doi:10.1016/j.ymssp.2014.07.
010.

M. Grewal and K. Glover. Identifiability of linear and nonlinear dynamical systems. IEEE Transactions on Automatic
Control, 21(6):833–837, 1976. doi:10.1109/TAC.1976.1101375.

F. Gustafsson and P. Hriljac. Particle filters for system identification with application to chaos prediction. In Proceed-
ings of the 13th IFAC Symposium on System Identification, 2003.

Fredrik Gustafsson. Particle filter theory and practice with positioning applications. IEEE Aerospace and Electronic
Systems Magazine, 25(7):53 – 82, 2010. doi:10.1109/MAES.2010.5546308.

Fredrik Gustafsson and Gustaf Hendeby. Some relations between extended and unscented Kalman filters. IEEE
Transactions on Signal Processing, 60(2):545 – 555, 2012. doi:10.1109/TSP.2011.2172431.

Thomas J. R. Hughes. Finite element method - linear static and dynamic finite element analysis. Dover Publications,
2000. ISBN 978-0-486-41181-1.

Jinwoo Jang and Andrew W. Smyth. Model updating of a full-scale FE model with nonlinear constraint equations and
sensitivity-based cluster analysis for updating parameters. Mechanical Systems and Signal Processing, 83:337 –
355, 2017. doi:10.1016/j.ymssp.2016.06.018.

Simon Julier and Jeffrey K. Uhlmann. A general method for approximating nonlinear transformations of probability
distributions. Technical report, Robotics Research Group, Dept. of Engineering Science, University of Oxford,
1996.

Simon J. Julier. A skewed approach to filtering. In Proceedings of the SPIE Conference on Signal and Data Processing
of Small Targets 1998, volume 3373, pages 271 – 282, 1998. doi:10.1117/12.324626.

Simon J. Julier. The scaled unscented transformation. In Proceedings of the 2002 IEEE American Control Conference,
volume 6, pages 4555 – 4559, 2002. doi:10.1109/ACC.2002.1025369.

Simon J. Julier. The spherical simplex unscented transformation. In Proceedings of the 2003 IEEE American Control
Conference, volume 3, pages 2430 – 2434, 2003. doi:10.1109/ACC.2003.1243439.

Simon J. Julier and Jeffrey K. Uhlmann. A consistent, debiased method for converting between polar and cartesian
coordinate systems. In Proceedings of SPIE 3086, Acquisition, Tracking, and Pointing XI, volume 3086, pages 110
– 121, 1997. doi:10.1117/12.277178.

Simon J. Julier and Jeffrey K. Uhlmann. Reduced sigma point filters for the propagation of means and covariances
through nonlinear transformations. In Proceedings of the 2002 IEEE American Control Conference, volume 2,
pages 887 – 892, 2002. doi:10.1109/ACC.2002.1023128.

L. S. Katafygiotis and J. L. Beck. Updating models and their uncertainties. II: model identifiability. Journal of
Engineering Mechanics, 124(4):463–467, 1998. doi:10.1061/(ASCE)0733-9399(1998)124:4(463).

Nam-Ho Kim. Introduction to nonlinear finite element analysis. Springer, 2015. ISBN 978-1-4419-1745-4.
Thaleia Kontoroupi and Andrew W. Smyth. Online noise identification for joint state and parameter estimation of non-

linear systems. ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering,

209

http://dx.doi.org/10.1109/LSP.2009.2024859
http://dx.doi.org/10.1109/ACC.2006.1657419
http://dx.doi.org/10.1098/rsta.2014.0405
http://dx.doi.org/10.1016/j.ymssp.2014.07.010
http://dx.doi.org/10.1016/j.ymssp.2014.07.010
http://dx.doi.org/10.1109/TAC.1976.1101375
http://dx.doi.org/10.1109/MAES.2010.5546308
http://dx.doi.org/10.1109/TSP.2011.2172431
http://dx.doi.org/10.1016/j.ymssp.2016.06.018
http://dx.doi.org/10.1117/12.324626
http://dx.doi.org/10.1109/ACC.2002.1025369
http://dx.doi.org/10.1109/ACC.2003.1243439
http://dx.doi.org/10.1117/12.277178
http://dx.doi.org/10.1109/ACC.2002.1023128
http://dx.doi.org/10.1061/(ASCE)0733-9399(1998)124:4(463)


BIBLIOGRAPHY

2(3):B4015006, 2016. doi:10.1061/AJRUA6.0000839.
Thaleia Kontoroupi and Andrew W. Smyth. Online Bayesian model assessment using nonlinear filters. Structural

Control and Health Monitoring, 24(3):e1880, 2017. doi:10.1002/stc.1880.
Fredrik Lindsten. An efficient stochastic approximation EM algorithm using conditional particle filters. In Proceedings

of the 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, pages 6274 – 6278, 2013.
doi:10.1109/ICASSP.2013.6638872.

Jiang Liu, Yujin Wang, and Ju Zhang. A linear extension of unscented kalman filter to higher-order moment-matching.
In Proceedings of the 53rd IEEE Conference on Decision and Control, pages 5021 – 5026, 2014.

Ming Liu and Guobin Chang. Gravity matching aided inertial navigation technique based on marginal robust unscented
Kalman filter. Mathematical Problems in Engineering, 2015, 2015. doi:10.1155/2015/592480.

Xiaodong Luo, Irene M. Moroz, and Ibrahim Hoteit. Scaled unscented transform gaussian sum filter: Theory and
application. Physica D: Nonlinear Phenomena, 239(10):684–701, 2010. doi:10.1016/j.physd.2010.01.022.

K. V. Mardia. Measures of multivariate skewness and kurtosis with applications. Biometrika, 57(3):519 – 530, 1970.
M. Masoumnezhad, A. Jamali, and N. Nariman-zadeh. A robust unscented Kalman filter for nonlinear dynamical

systems with colored noise. Jounal of Automation and Control Engineering, 2(3):310 – 315, September 2014.
doi:10.12720/joace.2.3.310-315.

Peter S. Maybeck. Stochastic processes and linear dynamic system models, volume 1, chapter 4, pages 133 – 202.
Academic Press, New York, 1979.

Philippe Moireau and Dominique Chapelle. Reduced-order unscented Kalman filtering with application to parameter
identification in large-dimensional systems. ESAIM: Control, Optimisation and Calculus of Variations, 17(2):380
– 405, 2011. doi:10.1051/cocv/2010006.

Mark R. Morelande and Bill Moran. An unscented transformation for conditionally linear models. In Proceedings
of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP ’07), volume 3, pages
1417 – 1420, 2007. doi:10.1109/ICASSP.2007.367112.

Virginia Mosquera, Andrew W. Smyth, and Raimondo Betti. Rapid evaluation and damage assessment of instrumented
highway bridges. Earthquake Engineering & Structural Dynamics, 41(4):755–774, 2012. doi:10.1002/eqe.1155.
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Appendix A: Kalman filter and extended

Kalman filter equations

A.1 Kalman filter equations

Let us consider the linear Gaussian system:

zk = Gk−1zk−1 +gk−1 + vk−1 (A.1a)

yk = Hkzk +hk +ηk (A.1b)

At each time step k the filtering posterior pdf of the state zk knowing the measurements y1:k can

be inferred exactly using the Kalman filter equations. As for any Bayesian filtering scheme, these

equations consist of a propagation and an update step:

• Start with posterior at time step k−1: N
(
zk−1;zk−1|k−1,Pk−1|k−1

)
• Propagation equation

[
zk|k−1,Pk|k−1

]
= KF propagate(Gk−1,gk−1)

{
zk−1|k−1,Pk−1|k−1

}
which consists of:

zk|k−1 = Gk−1zk−1|k−1 +gk−1

Pk|k−1 = Gk−1Pk−1|k−1GT
k−1 +Qk−1
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• Update equation

[
zk|k,Pk|k

]
= KFupdate(yk;Hk,hk)

{
zk|k−1,Pk|k−1

}
which consists of:

zk|k = zk|k−1 +Kk(yk−Hkzk|k−1−hk)

Pk|k = (I−KkHk)Pk|k−1

Kk = Pk|k−1HT
k L−1

k

Lk = HkPk|k−1HT
k +Rk

• End with posterior at time step k: N
(
zk;zk|k,Pk|k

)

A.2 Second order extended Kalman filter equations

Let’s consider the nonlinear Gaussian system:

zk = ϕ(zk−1)+gk−1 + vk−1 (A.2a)

yk = ψ(zk)+hk +ηk (A.2b)

where ϕ and ψ are nonlinear functions. In the extended Kalman filters, one linearizes those two

functions using their Taylor series expansion around the mean. In the second order extended

Kalman filter (EKF2), terms up to the second order are kept in the expansion. Thus one can

write for the propagation equation:

ϕ(zk−1) = ϕ(zk−1|k−1 +δ z)≈ ϕ(zk−1|k−1)+Gzδ z+∑
i

1
2

δ zGi
zzδ zεi

with Gz the jacobian of ϕ and Gi
zz the hessian of the ith component of ϕ , both computed at point

zk−1|k−1. Also, εi is a vector of zeros with 1 at position i. For the measurement equation one has:

ψ(zk) = ψ(zk|k−1 +δ z)≈ ψ(zk|k−1)+Hzδ z+∑
i

1
2

δ zH i
zzδ zεi
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with Hz the jacobian of ψ and H i
zz the hessian of the ith component of ψ , both computed at point

zk|k−1.

One can then show (see for example [Särkkä, 2013]) that the propagation and update equations

of the second order extended Kalman filter can be written as follows:

• Propagation equation

[
zk|k−1,Pk|k−1

]
= EKF2 propagate(ϕ)

{
zk−1|k−1,Pk−1|k−1

}
which consists of:

zk|k−1 = ϕ(zk−1|k−1)+
1
2 ∑

i
εitr{Gi

zzPk−1|k−1}

Pk|k−1 = GzPk−1|k−1GT
z +

1
2 ∑

i,i′
εiε

T
i′ tr{G

i
zzPk−1|k−1Gi′

zzPk−1|k−1}+Qk−1

• Update equation

[
zk|k,Pk|k

]
= EKF2update(yk;ψ)

{
zk|k−1,Pk|k−1

}
which consists of:

zk|k = zk|k−1 +Kk(yk−ψ(zk|k−1)−
1
2 ∑

i
εitr{H i

zzPk|k−1})

Pk|k = Pk|k−1−KkLkKT
k

Kk = Pk|k−1HT
z L−1

k

Lk = HzPk|k−1HT
z +

1
2 ∑

i,i′
εiε

T
i′ tr{H

i
zzPk|k−1H i′

zzPk|k−1}+Rk

Note: in the first order Kalman filter, only the first order terms are kept in the Taylor expansion.

The equations for this filter can be easily obtained from the previous equations by setting all the

Hessian terms to 0.
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Appendix B: Properties of the CSN and GM

distributions

B.1 Moments of the CSN distribution

In chapter 3, section 3.4.2, a nonlinear Kalman filter is derived that uses a closed skew normal

distribution as its baseline pdf. Derivation of this filter involves moment matching, i.e., learn the

parameters of the CSN distribution knowing its moments (propagated through the UT). In the case

of a CSN with q = 1, one can analytically compute the moments of the CSN distribution since

Φ1 and φ1 have closed form expressions. However those moments are related in a nonlinear way

to the parameters of the distribution, thus rendering moment matching quite challenging. In the

numerical example presented in section 3.4.2 we restricted ourselves to the case of q = 1,ν = 0,

for which one can derive:

E [X ] = µ +AT 2√
2πD

(B.1a)

cov(X ,X) = Σ− 2
πD

AT A (B.1b)

E
[
(X−E [X ])3

j

]
= (16−4π)

(
a j√
2πD

)3

(B.1c)

where A= ΓΣ and D=∆+ΓΣΓT . Moment matching can be performed analytically in this way (no

need for an optimization scheme), however this distribution might be unable to represent complex
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high dimensional RVs.

If that is the case, one could think about extending to q = 2, for which we found that moments

can also be derived analytically, using the following:

dΦ2(x,y)
dx

=
∫

y
φ2(x,y)dy = φ1(x; µ1,σ1)Φ1(y; µ2 +ρσ2

x−µ1

σ1
,σ2

√
1−ρ2) (B.2a)

dΦ2(x,y)
dy

= φ1(y; µ2,σ2)Φ1(x; µ1 +ρσ1
y−µ2

σ2
,σ1

√
1−ρ2) (B.2b)

where Φ2 is the cdf of the 2-dimensional Gaussian distribution with mean

{
µ1

µ2

}
, correlation

coefficient ρ and standard deviation in each direction σ1,σ2. Performing moment matching will

however require some sort of optimization scheme.

B.2 CSN distribution: closure under conditioning property

In the framework presented in chapter 3, the closure under conditioning property of the baseline pdf

is used for the derivation of the measurement update equations. This property is given here for the

CSN distribution, the reader is referred to [González-Farı́as et al., 2004] for proof of this property.

If x =

{
x1

x2

}
∼CSNn,q(µ,Σ,Γ,ν ,∆) with parameters partitioned as µ =

{
µ1

µ2

}
, Σ =

[
Σ11 Σ12

Σ21 Σ22

]
and Γ =

[
Γ1 Γ2

]
, then the conditional pdf of x1 knowing x2 = x̄2 is:

x1|x2 = x̄2 ∼CSNn1,q(µ1,Σ1,Γ1,ν1,∆1) (B.3a)
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with parameters

µ1|2 = µ1 +Σ12Σ
−1
22 (x̄2−µ2), (B.3b)

Σ1|2 = Σ11−Σ12Σ
−1
22 Σ21, (B.3c)

Γ1|2 = Γ1, (B.3d)

ν1|2 = ν− (Γ2 +Γ1Σ12Σ
−1
22 )(x̄2−µ2), (B.3e)

∆1|2 = ∆ (B.3f)

B.3 Gaussian mixture distribution: closure under conditioning

property

An identical property needs to be derived for the Gaussian mixture distribution. If x =

{
x1

x2

}
follows a multivariate Gaussian mixture (GM) distribution, i.e.,{

x1

x2

}
∼

L

∑
l=1

π
(l)N

{x1

x2

}
;

{
µ1

µ2

}(l)

,

[
Σ11 Σ12

Σ21 Σ22

](l) (B.4)

then the conditional probability of x1 knowing x2 = x̄2 is also a GM distribution:

p(x1|x2 = x̄2) =
p(x1, x̄2)

p(x̄2)
=

L

∑
l=1

π̂
(l)N

(
x1|x̄2; µ

(l)
1|2,Σ

(l)
1|2

)
(B.5)

with

π̂
(l) =

π(l)N
(

x̄2; µ
(l)
2 ,Σ

(l)
22

)
∑

L
j=1 π( j)N

(
x̄2; µ

( j)
2 ,Σ

( j)
22

) (B.6a)

µ
(l)
1|2 = µ

(l)
1 +Σ

(l)
12 (Σ

(l)
22 )
−1(x̄2−µ

(l)
2 ) (B.6b)

Σ
(l)
1|2 = Σ

(l)
11 −Σ

(l)
12 (Σ

(l)
22 )
−1

Σ
(l)
21 (B.6c)
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Appendix C: Derivation and properties of

some higher order sigma point sets for use

in the UT

C.1 Sigma point set that captures marginal skewness in all di-

rections

In chapter 3, section 3.4.2, a nonlinear Kalman filter is derived that uses a closed skew normal

distribution as its baseline pdf, which enables tracking of third order moments of the posterior pdfs

over time. This requires derivation of a higher order sigma point set, which captures skewness

information of a RV X . A Nsig = 2nX +1 sigma point set that captures the known mean E [X ] = m,

covariance PXX and marginal skew terms SX of an input RV X is computed using the following

steps:

1. compute the 2nX points and weights of a set that captures the zero mean, identity covariance

and marginal skew terms of a white RV Z as:

Z(i) =−z1iei W (i) = w1i, i = 1 : nX (C.1)

Z(nX+i) = z2iei W (nX+i) = w2i, i = 1 : nX
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where ei represents a column vector with 1 at position i and 0 elsewhere. As derived in

[Julier, 1998], z1i is the positive root of the quadratic equation

(w1i +w2i)z2 +(w1i +w2i)SZ
i z−1 = 0 (C.2a)

and

z2i = z1i
w1i

w2i
(C.2b)

w1i =
(w1i +w2i)

(w1i +w2i)z2
1i +1

(C.2c)

w2i = (w1i +w2i)−w1i (C.2d)

The sum of the weights (w1i +w2i) (positive) is prescribed in each direction, and the skew

vector Sz is computed as:

SZ =
(√

PXX
∧3
)−1

SX (C.3)

where ·∧3 represents element-wise cubic power.

2. compute the 2nX +1 points and weights of the set that captures the known mean m, covari-

ance PXX and marginal skew terms SX of X as:

X (0) = m W (0) = w0 (C.4a)

X (i) = m+
√

PXXZ(i) W (i) = w1i, i = 1 : nX (C.4b)

X (nX+i) = m+
√

PXXZ(nX+i) W (nX+i) = w2i, i = 1 : nX (C.4c)

where w0 (positive) is also prescribed, constrained by w0 +∑i(w1i +w2i) = 1.

This procedure creates a set that captures up to the marginal skewness in each direction. However

for complex distributions where the skewness is far from 0, the 4th order moments often have a

considerable effect too, especially in the computation of the covariance of the transformed RV. The

procedure above allows for some liberty in the choice of w0 and (w1i +w2i) in each direction i,
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thus one can choose these so that the error on the fourth order marginal moments is minimized.

In our implementation, we choose w0 to minimize this error on the fourth order moments, and

w1i +w2i =
1−w0

nX
in each direction.

An important note regarding Eq. (C.3): this equation is valid only because the set of points

derived for the white RV Z sets all the cross-skew terms to 0. Only if those cross-skew terms are

set to 0 one can write:

E
[
(X−m)3

j
]
= E

[(√
PXX ( j,:)Z

)3
]
=
√

PXX
∧3
( j,:)E

[
Z∧3] (C.5a)

SX
j =
√

PXX
∧3
( j,:)S

Z (C.5b)

and thus obtain Eq. (C.3) in a matrix format.

C.2 Moments captured by the L · (2nx + 1) Gaussian mixture

sigma point set

In chapter 5, section 5.3, a unscented Kalman filter that uses a Gaussian mixture as its baseline

distribution is derived. This requires usage of an appropriate sigma point set. In this section we

prove that this set captures first and second order moments of a Gaussian mixture, thus achieving

same order of accuracy than the generic symmetric sigma point set for unimodal distributions. We

thus consider an input RV X , known to be distributed as a mixture of L Gaussians

X ∼
L

∑
l=1

π
(l)N

(
·; µ

(l),Σ(l)
)

In this section we show that a sigma point set composed of L symmetric sets, one for each Gaus-

sian ·(l) in the mixture, weighted according to the mixture weights π(l), captures the mean and

covariance of the GM input RV X . This set will then achieve second order accuracy on estimation

of the mean of a transformed RV Z = g(X), and first order accuracy on the covariance estimation.
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We define the set of Nsig = L · (2nx + 1) sigma points {X (i,l)}i=0:2nx,l=1:L and their associated

weights {W (i,l)}i=0:2nx,l=1:L as:

∀l ∈ [1 : L] ,

X (0,l) = µ
(l) W (0,l) = π

(l)w(0)

X (i,l) = µ
(l)+
√

κ +nx(
√

Σ(l))i W (i,l) = π
(l)w(i), for i = 1 : nx

X (nx+i,l) = µ
(l)−
√

κ +nx(
√

Σ(l))i W (i,l) = π
(l)w(nx+i), for i = 1 : nx

where {w(i)}i=0:2nx are the weights associated to the symmetric set. For each Gaussian in the

mixture, the symmetric set captures mean and covariance of the input Gaussian ·(l) by construction,

i.e.,

2nx

∑
i=0

w(i)X (i,l) = µ
(l)

2nx

∑
i=0

w(i)(X (i,l)−µ
(l))(X (i,l)−µ

(l))T = Σ
(l)

Then we show that the total set captures the global mean and covariance of the RV X (mixture of

L Gaussians). Derivation for the mean is as follows:

L

∑
l=1

2nx

∑
i=0

W (i, j)X (i,l) =
L

∑
l=1

π
(l)

2nx

∑
i=0

w(i)X (i,l)

=
L

∑
l=1

π
(l)

µ
(l)

= E [X ] (equation for mean of a Gaussian mixture)
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and for the covariance:

L

∑
l=1

2nx

∑
i=0

W (i, j)(X (i,l)−E [X ])(X (i,l)−E [X ])T

=
L

∑
l=1

π
(l)

2nx

∑
i=0

w(i)(X (i,l)−µ
(l)+µ

(l)−E [X ])(X (i,l)−µ
(l)+µ

(l)−E [X ])T

=
L

∑
l=1

π
(l)

2nx

∑
i=0

w(i)
(
(X (i,l)−µ

(l))(X (i,l)−µ
(l))T +(µ(l)−E [X ])(µ(l)−E [X ])T

)
+

L

∑
l=1

π
(l)

2nx

∑
i=0

w(i)
(
(X (i,l)−µ

(l))(µ(l)−E [X ])T +(µ(l)−E [X ])(X (i,l)−µ
(l))T

)
The two last terms of this 4 terms sum can be shown to equate to 0, as:

2nx

∑
i=0

w(i)(X (i,l)−µ
(l))(µ(l)−E [X ])T =

((
2nx

∑
i=0

w(i)X (i,l)

)
−µ

(l)

)
(µ(l)−E [X ])T

= (µ(l)−µ
(l))(µ(l)−E [X ])T

= 0

which then gives for the covariance:

L

∑
l=1

2nx

∑
i=0

W (i, j)(X (i,l)−E [X ])(X (i,l)−E [X ])T

=
L

∑
l=1

π
(l)

2nx

∑
i=0

w(i)
(
(X (i,l)−µ

(l))(X (i,l)−µ
(l))T +(µ(l)−E [X ])(µ(l)−E [X ])T

)
=

L

∑
l=1

π
(l)
(

Σ
(l)+(µ(l)−E [X ])(µ(l)−E [X ])T

)
=Cov(X) (equation for covariance of a Gaussian mixture)
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Appendix D: Derivation of Jacobians for use

in the eMUKF for parameter estimation in

FE models

D.1 Nonlinear hyperbolic problem

In this section, derivation of the approximate Jacobian J f =

[
∂uk+1
∂uk

∂uk+1
∂vk

∂vk+1
∂uk

∂vk+1
∂vk

]
whose formula is given

in chapter 4, section 4.4, Eq. (4.32) is explained in more details. First let us recall the Newmark

formula for solving a nonlinear hyperbolic initial value problem:

uk+1 = uk +dtvk +
dt2

4
(ak +ak+1) (D.1a)

vk+1 = vk +
dt
2
(ak +ak+1) (D.1b)

Mak+1 +Cvk+1 +F(uk+1) = P(uk+1) (D.1c)

Combining the two first equations to cancel the acceleration terms lead to:

vk+1 +vk =
2
dt
(uk+1−uk) (D.2)

From this equation it is easy to relate derivatives of velocity and displacement terms, which will
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be further needed in the derivation. For instance, one can write:

∂vk+1

∂uk
=

2
dt
(
∂uk+1

∂uk
−1) (D.3)

We focus on the derivation of the first term of the Jacobian, ∂uk+1
∂uk

. Derivation of the remaining

terms follow the same logic. Re-arranging the first equation, and pre-multiplying by mass matrix

M yields

Muk+1−
dt2

4
Mak+1 = Muk +dtMvk +

dt2

4
Mak (D.4)

From the equilibrium equation, one can write for both j = k,k+1

Ma j = P(u j)−Cv j−F(u j) (D.5)

∂Ma j

∂u j
=−Kt |@ j (D.6)

∂Ma j

∂v j
=−C (D.7)

Thus, taking the partial derivative of Eq. D.4 with respect to uk, being careful to apply the chain

rule for the left hand size as ∂

∂uk
= ∂

∂uk+1

∂uk+1
∂uk

+ ∂

∂vk+1

∂vk+1
∂uk

gives:

M
∂uk+1

∂uk
− dt2

4
(−Kt |@k+1

∂uk+1

∂uk
−C

∂vk+1

∂uk
) = M+

dt2

4
(−Kt |@k) (D.8)

(M+
dt2

4
Kt |@k+1)

∂uk+1

∂uk
+

dt2

4
C

∂vk+1

∂uk
) = M− dt2

4
Kt |@k (D.9)

Now making use of Eq. (D.3) and re-arranging gives

(M+
dt2

4
Kt |@k+1 +

dt
2

C)
∂uk+1

∂uk
= M− dt2

4
Kt |@k +

dt
2

C (D.10)

∂uk+1

∂uk
=

(
M+

dt2

4
Kt |@k+1 +

dt
2

C
)−1(

M− dt2

4
Kt |@k +

dt
2

C
)

(D.11)

which ends the proof for the first term of the Jacobian states in Eq. 4.32. Looking at this equation

one can also see that it agrees with the linear Jacobian derived in Eq. (4.21), since for a linear

system, Kt |@ j = K,∀ j. It should also be mentioned that this Jacobian is an approximation since
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it does not take into account all intermediate steps of the Newton iteration scheme. The Jacobian

derived therein only involves evaluations of the tangent stiffness matrix at both times k and k+

1, while in reality this matrix is updated several times per time step, once per iteration of the

Newton scheme. In the numerical experiments, we used Kt |@k as the first evaluation during time

step k + 1 and Kt |@k+1 as the last evaluation at time step k + 1. However, if the sampling time

step dt is relatively large and the system highly nonlinear, the tangent stiffness matrix might vary

significantly within a time step and this approximation might lead to erroneous results. We thus

recommend in this case to perform several smaller propagation steps, similar to a bisection method

used in FEA when the Newton does not converge.

D.2 Nonlinear parabolic problem

For a parabolic problem of the form Mv+F(u) = P(u), the trapezoidal rule with α = 1
2 can be

used to solve for the initial value problem as:

Mvk+1 +F(uk+1) = P(uk+1) (D.12a)

uk+1 = uk +
dt
2
(vk +vk+1) (D.12b)

Pre-multiplying the second equation by the mass matrix M and eliminating the velocity terms using

the first equation yields:

Muk+1 +
dt
2
(F(uk+1)−P(uk+1)) = Muk−

dt
2
(F(uk)−P(uk)) (D.13)

Taking the derivative with respect to uk yields(
M+

dt
2

Kt |@k+1

)
uk+1

uk
= M− dt

2
Kt |@k (D.14)

where the tangent stiffness matrix is defined as Kt =
∂ (F−P)

∂u
. Again, this equation agrees with its

linear counterpart given in Eq. (4.18).
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Appendix E: ORC identifiability test for a

SDOF Duffing oscillator

In this section we show an example of identifiability test, namely the ORC test, used to determine if

a SDOF Duffing oscillator is or not identifiable (local identifiability). We consider here an affine-

input nonlinear system (with only one input for simplicity), which can be written in the form:

Ẋ = f (X)+g(X)u (E.1a)

yi = hi(X) (E.1b)

Then the ORC test has a simplified version, which is explained here using an example (see for

instance [Chatzis et al., 2015b] for more detailed explanations on this test and identifiability in

general). The problem of interest here is a Duffing oscillator:

ẋ1 = x2 (E.1c)

ẋ2 =−θ1x1−θ2x2−θ3x3
1 +θ4u (E.1d)

θ̇ = 0 (E.1e)

y1 = x1 (E.1f)

where θ =
[

k
m

c
m

α

m
β

m

]T
. We perform the test with respect to the augmented vector X =[

x1 x2 θ T
]T
∈ R6. The parameter vector is identifiable if the rank condition in the ORC test is
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satisfied, i.e. if rank dΩk+1 = 6 when k ≤ 6−2 = 4. The steps of the ORC test are as follows:

Starting point: k = 0, Ω0 =
[
h1,h2, · · ·

]
= x1, ∆Ω0 = Ω0 = x1, dΩ0 =

[
1 0 0 0 0 0

]
and

rank dΩ0 = 1.

First iteration:

• ∆Ω1 =
[
(d(∆Ω0) · f )T ,(d(∆Ω0) ·g)T

]T
= [x2,0]

T

• Ω1 = Ω0∪∆Ω1 =
[
x1,x2,0

]T

• dΩ1 =

1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 0


• rank dΩ1 = 2 6= rank dΩ0and 6= 6 and k = 0 < 4 so go on to next iteration.

• (optional) Eliminate dependent rows from dΩ1 and corresponding rows from Ω1, i.e. dΩ1 =[
1 0 0 0 0 0
0 1 0 0 0 0

]
and Ω1 =

[
x1

x2

]

Second iteration (k = 1).

• ∆Ω2 =

[
d(∆Ω1) · f

d(∆Ω1) ·g

]
=

[
−θ1x1−θ2x2−θ3x3

1

θ4

]

• Ω2 = Ω1∪∆Ω2 =


x1

x2

−θ1x1−θ2x2−θ3x3
1

θ4



• dΩ2 =


1 0 0 0 0 0
0 1 0 0 0 0

−θ1−3θ3x2
1 −θ2 −x1 −x2 −x3

1 0
0 0 0 0 0 1


• rank dΩ2 = 4 6= rank dΩ1and 6= 6 and k = 1 < 4 so go on to next iteration.
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Third iteration (k = 2).

• ∆Ω3 =

[
d(∆Ω2) · f

d(∆Ω2) ·g

]
=


θ2(θ1x1 +θ2x2 +θ3x3

1)− x2(θ1 +3θ3x2
1)

0
−θ2θ4

0



• Ω3 = Ω2∪∆Ω3 =



x1

x2

−θ1x1−θ2x2−θ3x3
1

θ4

θ2(θ1x1 +θ2x2 +θ3x3
1)− x2(θ1 +3θ3x2

1)

0
−θ2θ4

0



• dΩ3 =



1 0 0 0 0 0
0 1 0 0 0 0

−θ1−3θ3x2
1 −θ2 −x1 −x2 −x3

1 0
0 0 0 0 0 1

−6θ3x1x2 +θ1θ2 +3θ2θ3x2
1 −θ1−3θ3x2

1 +θ 2
2 −x2 +θ2x1 θ1x1 +2θ2x2 +θ3x3

1 −3x2
1x2 +θ2x3

1 0
0 0 0 0 0 0
0 0 0 −θ4 0 −θ2

0 0 0 0 0 0


• rank dΩ3 = 6, the rank condition is satisfied and the parameter vector is identifiable.
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