7 research outputs found

    An R package for simulating metapopulation dynamics and range expansion under environmental change

    Get PDF
    The metapopulation paradigm is central in ecology and conservation biology to understand the dynamics of spatially-structured populations in fragmented landscapes. Metapopulations are often studied using simulation modelling, and there is an increasing demand of user-friendly software tools to simulate metapopulation responses to environmental change. Here we describe the MetaLandSim R package, mwhich integrates ideas from metapopulation and graph theories to simulate the dynamics of real and virtual metapopulations. The package offers tools to (i) estimate metapopulation parameters from empirical data, (ii) to predict variation in patch occupancy over time in static and dynamic landscapes, either real or virtual, and (iii) to quantify the patterns and speed of metapopulation expansion into empty landscapes. MetaLandSim thus provides detailed information on metapopulation processes, which can be easily combined with land use and climate change scenarios to predict metapopulation dynamics and range expansion for a variety of taxa and ecological systems

    Survey of the amphibians in “FĂąnațele Clujului – CopĂąrșaie”, part of the “Dealurile Clujului de Est” (ROSCI0295) Natura 2000 protected area

    Get PDF
    As habitat loss poses challenge to conservation, it is becoming increasingly important to address questions about the extent to which connectivity between habitat patches is changing, and how this affects the local population of different species in these patches. The objective of our research was to monitor ponds and the pond-breeding amphibian species in a protected area. Therefore, we conducted day and night surveys, and compare the data collected in 2022 with the results of the latest available survey (2019), to simulate the patch occupancy of amphibian species over a 25-year timeframe. We found that combining the species occupancy data collected from both day and night surveys lead to higher patch occupancy values and higher number of registered individuals, compared to data collected only during daytime. The number of ponds decreased from 2019 to 2022, and further habitat loss could result in the disappearance of the local population if the area continues to dry out. Climate and landscape change could be major contributors to habitat loss in the future, therefore, in order to ensure the persistence of these local populations, we recommend the development of climate and habitat scenarios, and the planning of conservation measures based on these scenarios

    Species traits, patch turnover and successional dynamics: when does intermediate disturbance favour metapopulation occupancy?

    Get PDF
    Research articleBackground: In fragmented landscapes, natural and anthropogenic disturbances coupled with successional processes result in the destruction and creation of habitat patches. Disturbances are expected to reduce metapopulation occupancy for species associated with stable habitats, but they may benefit species adapted to transitory habitats by maintaining a dynamic mosaic of successional stages. However, while early-successional species may be favoured by very frequent disturbances resetting successional dynamics, metapopulation occupancy may be highest at intermediate disturbance levels for species with mid-successional habitat preferences, though this may be conditional on species traits and patch network characteristics. Here we test this ‘intermediate disturbance hypothesis’ applied to metapopulations (MIDH), using stochastic patch occupancy simulation modelling to assess when does intermediate disturbance favour metapopulation occupancy. We focused on 54 virtual species varying in their habitat preferences, dispersal abilities and local extinction and colonization rates. Long-term metapopulation dynamics was estimated in landscapes with different habitat amounts and patch turnover rates (i.e. disturbance frequency). Results: Equilibrium metapopulation occupancy by late-successional species strongly declined with increasing disturbance frequency, while occupancy by early-successional species increased with disturbance frequency at low disturbance levels and tended to level-off thereafter. Occupancy by mid-successional species tended to increase along with disturbance frequency at low disturbance levels and declining thereafter. Irrespective of habitat preferences, occupancy increased with the amount of habitat, and with species dispersal ability and colonisation efficiency. Conclusions: Our study suggests that MIDH is verified only for species associated with mid-successional habitats. These species may be particularly sensitive to land use changes causing either increases or decreases in disturbance frequency. This may be the case, for instance, of species associated with traditional agricultural and pastoral mosaic landscapes, where many species disappear either through intensification or abandonment processes that change disturbance frequencyinfo:eu-repo/semantics/publishedVersio

    Synergistic effects of climate change and habitat fragmentation on species range shifts and metapopulation persistence

    Get PDF
    The effects of climate and landscape change on biodiversity have been widely acknowledged. However, there is still limited understanding on how the interaction among these processes affects species persistence over large spatial scales. This thesis aims to study the synergistic effects of climate and landscape change on species persistence and range shift dynamics. Using the Cabrera vole as model species, and combining ecological niche modeling (ENM), non-invasive genetic analysis and field sampling at predicted range margins, it is shown that forecasting range shifts of metapopulations under climate change, should require detailed sampling at the extremes of the ecological niche and that combining these three techniques allows an effective assessment of the niche. Analysis of metapopulation persistence and range expansion under landscape and climate change involved the development of an R package, ‘MetaLandSim’. This package offers a set of simulation tools integrating concepts from metapopulation and graph theories, providing an opportunity for testing ecological theories and evaluating species responses to environmental change. A first example of the package use is demonstrated by combining ENM projections with dispersal models (DM) considering three different connectivity scenarios. It is clearly demonstrated that combining range shift with lower connectivity will result in narrower range sizes for the Cabrera vole, highlighting the relevance of both, climate change and landscape connectivity in range dynamics evaluation. Finally, ‘MetaLandSim’ was used to test the hypothesis that intermediate levels of landscape disturbance may increase species persistence under certain species and landscape traits. Using a set of 54 virtual species differing in their ecological traits, it is shown that species with mid to higher dispersal and early successional preferences were more likely to benefit from intermediate disturbance. Overall, this study provides important insights for improving predictions on metapopulation persistence and range dynamics under various scenarios of landscape and climate change; Efeitos sinergĂ©ticos das alteraçÔes climĂĄticas e fragmentação de habitat na distribuição das espĂ©cies e persistĂȘncia metapopulacional Resumo: Os efeitos das alteraçÔes de paisagem e climĂĄticas sĂŁo reconhecidos na literatura cientĂ­fica. Esta tese tem por objetivo contribuir para a clarificação e compreensĂŁo dos efeitos sinergĂ©ticos das alteraçÔes climĂĄticas e de paisagem na persistĂȘncia das metapopulaçÔes e na alteração das ĂĄreas de distribuição das espĂ©cies. Usando o ratode- Cabrera como modelo, e combinando a modelação de nicho ecolĂłgico (ENM) com tĂ©cnicas de genĂ©tica nĂŁo-invasiva e amostragens de campo nas margens da ĂĄrea de distribuição, demonstra-se a combinação das trĂȘs tĂ©cnicas e a inclusĂŁo de amostras nos extremos do nicho ecolĂłgico tornam mais eficaz que a previsĂŁo das novas ĂĄreas de distribuição num contexto de alteraçÔes climĂĄticas. A anĂĄlise da persistĂȘncia metapopulacional e da expansĂŁo da ĂĄrea de distribuição em condiçÔes de alteraçÔes ambientais envolveu o desenvolvimento do package de R ‘MetaLandSim’. Este oferece um conjunto de ferramentas de simulação combinando as teorias dos grafos e metapopulaçÔes, o que permite testar teorias ecolĂłgicas e avaliar respostas das espĂ©cies Ă s alteraçÔes ambientais. Usa-se este package para gerar modelos de dispersĂŁo (DM) que consideram simultaneamente a conectividade da paisagem e capacidade de dispersĂŁo. Estes DM, com trĂȘs cenĂĄrios de conectividade, foram projetados para o futuro e combinados com as projeçÔes dos ENM. Demonstra-se que a perda de conectividade, associada Ă  movimentação da janela climĂĄtica, terĂĄ reduzirĂĄ a ĂĄrea de distribuição do rato-de-Cabrera. Finalmente, o ‘MetaLandSim’ Ă© usado para testar a hipĂłtese de que nĂ­veis intermĂ©dios de perturbação da paisagem podem beneficiar algumas espĂ©cies. Foram usadas 54 espĂ©cies virtuais com diferentes caracterĂ­sticas ecolĂłgicas demonstrando que espĂ©cies com dispersĂ”es mĂ©dias a elevadas e preferĂȘncia por manchas nos primeiros estados da sucessĂŁo beneficiam de nĂ­veis intermĂ©dios de dinamismo. Este estudo fornece informação relevante para melhorar previsĂ”es da persistĂȘncia das metapopulaçÔes e das dinĂąmicas das ĂĄreas de distribuição sob diversos cenĂĄrios de alteraçÔes ambientais

    Suojelualueverkosto muuttuvassa ilmastossa – esiselvitys

    Get PDF
    Suomen ilmasto tulee muuttumaan jo lÀhivuosikymmeninÀ. Vuotuisen sademÀÀrÀn on ennustettu lisÀÀntyvÀn Suomessa 8 - 20 % ja lÀmpötilojen nousevan Suomessa 1,5 - 2 kertaa nopeammin kuin maapallolla keskimÀÀrin, eli 2 - 6 astetta vuosisadan loppuun mennessÀ. Ilmastonmuutoksella ennakoidaan olevan merkittÀvÀ vaikutus suojelualueverkoston kykyyn turvata luonnon monimuotoisuutta. Luonnonsuojelu onkin huomattavien haasteiden edessÀ, sillÀ suojelualuesuunnittelussa ei ole yleensÀ varauduttu voimakkaisiin muutoksiin. NÀiden haasteiden hallintaa vaikeuttaa myös ilmastonmuutoksen vaikutusten ennustamiseen liittyvÀt epÀvarmuudet. Suojelualueverkoston riittÀvyyttÀ ja kykyÀ sÀilyttÀÀ luonnon monimuotoisuus muuttuvassa ilmastossa voidaan arvioida eliölajiston, luontotyyppien ja ekosysteemien levinneisyyden ja ekologisten piirteiden, sekÀ ilmaston-muutoksen voimakkuuden alueellisten erojen ja suojelualueiden biogeofysikaalisten tekijöiden avulla. Tietoa tarvitaan erityisesti lajien ja luontotyyppien herkkyydestÀ ilmastonmuutokselle. Maisematason arvioinneissa voidaan kÀyttÀÀ yleisluonteisia kriteereitÀ kuten suojelualueiden mÀÀrÀ ja puskurialueiden laajuus, ekologisten kÀytÀvien esiintyminen ja maisemamatriisin soveltuvuus lajien leviÀmiseen. Itse suojelualueita voidaan arvioida niiden koon, maanpinnan muotojen ja elinympÀristöjen monipuolisuuden, pienilmastollisten refugioiden esiintymisen sekÀ paikallisen ilmastonmuutoksen voimakkuuden perusteella. Suojelualueverkoston arvioinnissa tulee huomioida myös verkoston ulkopuolisen maankÀytön vaikutuksia, sillÀ suojelualueiden ulkopuolella monimuotoisuutta turvaavilla toimilla voidaan edistÀÀ verkoston sopeutumista ilmastonmuutoksen vaikutuksiin. Ilmastonmuutokseen sopeutumiseen liittyvÀt toimet (esimerkiksi talousmetsissÀ) ja muu maankÀyttö voivat toisaalta johtaa luonnon monimuotoisuudelle haitallisiin vaikutuksiin suojelualueverkoston sisÀllÀ ja laajemminkin. Toimivien ekologisten yhteyksien sÀilyttÀminen on keskeistÀ muuttuvassa ilmastossa. Suomen lajistoon tulee tÀydennystÀ valtion rajojen ulkopuolelta. Siksi olisi tÀrkeÀÀ selvittÀÀ, kuinka hyvin erilaiset rajat ylittÀvÀt ekologiset kÀytÀvÀt, kuten Fennoskandian vihreÀ vyöhyke, toimivat lajien liikkumisreitteinÀ muuttuvassa ilmastossa. Luonnonsuojelualueverkosto on merkittÀvÀ ekosysteemipalvelujen tuottaja muuttuvassa ilmastossa. Yksi tÀrkeÀ suojelualueiden tuottama ekosysteemipalvelu on toimiminen hiilivarastona ja hiilinieluna. Siten suojelualueverkostolla on merkitystÀ ilmastonmuutoksen hillinnÀssÀ ja siihen sopeutumisessa, mutta tÀtÀ asiaa ei ole aiemmin tutkittu Suomessa

    Uncertainty, errors and virtual ecology: using artificial data to improve species distribution models

    Get PDF
    With the growing pressures exerted by anthropogenic activities (e.g. land-use changes, habitat fragmentation, greenhouse gas emissions) and environmental changes (e.g. climate change, biological invasions), biodiversity is being threatened worldwide. It is therefore important to sufficiently understand which factors influence the distribution and composition of species assemblages, develop tools allowing us to accurately predict them under current and future environmental conditions. Species distribution models (SDMs) are especially useful to tackle these challenges since they allow the modelling of the distribution of species and their assemblages at different spatial and temporal scales. This is done by simply relating species observations with environmental conditions where they occur. However, different factors (e.g. sample size, modelling technique) and errors/bias (i.e. false presences/absences) were shown to affect the prediction accuracy of single species and assemblage SDMs (i.e. S-SDMs). SDMs can also provide biased projections when predicting to regions or time periods with environmental conditions outside the range of data used for model calibration (i.e. model transferability) or when that data doesn’t capture the full conditions occupied by the species (i.e. truncated datasets). While the majority of SDMs use real species data, it is important to assess their accuracy by having complete control of the data and factors influencing species distributions, hence the use of virtual or simulated species. In the first chapter of my thesis, I used virtual species data to test SDM/S-SDMs and determine the degree to which different types and levels of errors in species data (i.e. false presences or absences) affect the predictions of individual species models, and how this is reflected in metrics that are frequently used to evaluate the prediction accuracy of SDMs. I found that interpretation of models’ performance depended on the data and metrics used to evaluate them, with model performance being more affected by false positives. In the second chapter, I assessed how different factors (sample size, sampling method, sampling prevalence, modelling technique and thresholding method) affect the prediction accuracy of S-SDMs. I found that prediction accuracy is mostly affected by modelling technique followed by sample size and that a ‘plot-like’ sampling method is recommended when sampling species data (i.e. best approximation of the species’ true prevalence). In my third chapter I tested the potential causes that increasingly truncated datasets have on the predictive accuracy of species assemblages and if the variables used to calibrate the models also influence that accuracy, finding that the degree of truncation has more influence on species with wide realized niches. Finally, on my last main chapter, I tested and compared how accurate different modelling strategies are at predicting species assemblages under current and future climatic conditions, assessing their transferability. I found that when using presence/pseudo-absence data, all the strategies failed to predict accurate species assemblages, being better when presence-absence data is used (under current environmental conditions). -- La biodiversitĂ© est actuellement mondialement menacĂ©e par l’augmentation de la pression due aux activitĂ©s anthropiques (p. ex. changement dans l’utilisation du territoire, fragmentation des habitats, Ă©mission de gaz Ă  effet de serre) et aux changements environnementaux (p. ex. changements climatiques, invasions biologiques). Il est donc capital de comprendre les facteurs influençant la distribution et la composition des assemblages d’espĂšces ainsi que de dĂ©velopper des outils pour les prĂ©dire prĂ©cisĂ©ment autant dans des conditions environnementales actuelles que future. Les modĂšles prĂ©dictifs de distribution (MPDs) sont des outils particuliĂšrement utiles pour apprĂ©hender ce genre de challenges, car ils permettent de modĂ©liser la distribution des espĂšces ainsi que leurs assemblages Ă  diffĂ©rentes Ă©chelles spatiales et temporelles. Cela peut se faire en reliant des observations d’espĂšces avec les conditions environnementales dans lesquelles elles se trouvent. Cependant, il a Ă©tĂ© montrĂ© que diffĂ©rent facteurs (p. ex. taille d’échantillonnage, techniques de modĂ©lisation) et erreur/biais (c.-Ă -d. fausses prĂ©sences/absences) peuvent affecter la qualitĂ© des prĂ©dictions obtenues lors de la modĂ©lisation prĂ©dictive de la distribution de simples espĂšces (MPD) et d’assemblages (S-SDMs). Les MPDs peuvent aussi crĂ©er des projections biaisĂ©es lorsqu’ils prĂ©disent dans des rĂ©gions ou des pĂ©riodes de temps qui possĂšdent des conditions environnementales en dehors de la gamme de donnĂ©es utilisĂ©es lors de la calibration du modĂšle (c.-Ă -d. transfĂ©rabilitĂ© du modĂšle) ou quand les donnĂ©es ne reprĂ©sentent pas l’entier des conditions occupĂ©es par l’espĂšce (c.-Ă -d. jeu de donnĂ©es tronquĂ©). Bien que la majoritĂ© des MPDs utilisent des donnĂ©es d’espĂšces rĂ©elles, il est important de pouvoir Ă©valuer leurs prĂ©cisions en ayant le contrĂŽle complet des donnĂ©es ainsi que des facteurs pouvant influencer la distribution des espĂšces. Seul l’utilisation d’espĂšces virtuelles ou simulĂ©es permet d’obtenir ce contrĂŽle total. Dans le premier chapitre de ma thĂšse, j’ai utilisĂ© des donnĂ©es d’espĂšces virtuelles afin de dĂ©terminer, Ă  l’aide de MPDs/S-SDMs, dans quelle mesure diffĂ©rents types et niveaux d’erreurs dans les donnĂ©es d’espĂšces (c.-Ă -d. fausses prĂ©sences ou absences) pouvaient affecter les prĂ©dictions obtenues. J’ai aussi cherchĂ© Ă  comprendre comment cela se reflĂšte sur les mĂ©triques habituellement utilisĂ©es pour Ă©valuer la qualitĂ© des prĂ©dictions de ces MPDs. J’ai dĂ©couvert que l’interprĂ©tation des performances des modĂšles dĂ©pends des donnĂ©es et des mĂ©triques utilisĂ©es pour les Ă©valuer. Cette performance est particuliĂšrement affectĂ©e par les faux positifs. Dans le second chapitre, j’ai Ă©valuĂ© comment diffĂ©rents facteurs (taille d’échantillonnage, mĂ©thode d’échantillonnage, prĂ©valence d’échantillonnage, technique de modĂ©lisation et mĂ©thode de dĂ©finition des seuils) affectent la qualitĂ© des prĂ©dictions obtenues Ă  l’aide de S- SDMs. J’ai trouvĂ© que la qualitĂ© des prĂ©dictions est principalement affectĂ©e par les techniques de modĂ©lisation, suivie par la taille de l’échantillonnage. Une mĂ©thode d’échantillonnage dite « plot-like » est recommandĂ©e lors de la rĂ©colte de donnĂ©es (c.-Ă -d. qu’elle donne la meilleure approximation de la rĂ©elle prĂ©valence de l’espĂšce). Dans mon troisiĂšme chapitre, j’ai testĂ© quels pouvaient ĂȘtre les potentiels effets de l’utilisation de jeux de donnĂ©es de plus en plus tronquĂ©s sur la qualitĂ© des prĂ©dictions des assemblages d’espĂšces ainsi que l’influence des variables utilisĂ©es lors de la calibration. Il s’avĂšre que le degrĂ© de troncature a plus d’effet sur les espĂšces ayant une large niche rĂ©alisĂ©e. Finalement, dans mon dernier chapitre, j’ai testĂ© diffĂ©rentes stratĂ©gies de modĂ©lisation puis j’ai comparĂ© leur aptitude Ă  prĂ©dire des assemblages d’espĂšces dans des conditions prĂ©sentes et futures pour Ă©valuer leur transfĂ©rabilitĂ©. J’ai dĂ©couvert que lors de l’utilisation de donnĂ©es de prĂ©sences/pseudo-absences, toutes les stratĂ©gies Ă©chouaient Ă  prĂ©dire de maniĂšre prĂ©cise les assemblages. L’utilisation de donnĂ©es de prĂ©sence/absences a permis, quant Ă  elle, d’obtenir de meilleurs rĂ©sultats, principalement dans des conditions environnementales prĂ©sentes
    corecore