132,595 research outputs found

    Evolutionary optimization within an intelligent hybrid system for design integration

    Get PDF
    An intelligent hybrid approach has been developed to integrate various stages in total design, including formulation of product design specifications, conceptual design, detail design, and manufacture. The integration is achieved by blending multiple artificial intelligence (AI) techniques and CAD/CAE/CAM into a single environment. It has been applied into power transmission system design. In addition to knowledge-based systems and artificial neural networks, another AI technique, genetic algorithms (GAs), are involved in the approach. The GA is used to conduct optimization tasks: (1) searching the best combination of design parameters to obtain optimum design of gears, and (2) optimization of the architecture of the artificial neural networks used in the hybrid system. In this paper, after a brief overview of the intelligent hybrid system, the GA applications are described in detail

    Organic Electro‐Optic Mach–Zehnder Modulators: From Physics‐Based to System‐Level Modeling

    Get PDF
    Herein, an overview on the physics-based and system-oriented modeling of organic electro-optic Mach–Zehnder modulators for optical communication systems is presented. State-of-the-art solutions in electro-optic organic materials and modulator designs are reviewed, with particular stress on silicon organic hybrid (SOH) and plasmonic organic hybrid (POH) solutions. Then, the physics-based simulation of concentrated and traveling-wave modulators is discussed both through 3D optical simulations and a combination of 2D and 3D models, where the modulator is partitioned into convenient subdomains. Neural network behavioral models are finally discussed and case studies are proposed on the physics-based and system-level simulation of SOH and POH Mach–Zehnder modulators

    Recent and upcoming BCI progress: overview, analysis, and recommendations

    Get PDF
    Brain–computer interfaces (BCIs) are finally moving out of the laboratory and beginning to gain acceptance in real-world situations. As BCIs gain attention with broader groups of users, including persons with different disabilities and healthy users, numerous practical questions gain importance. What are the most practical ways to detect and analyze brain activity in field settings? Which devices and applications are most useful for different people? How can we make BCIs more natural and sensitive, and how can BCI technologies improve usability? What are some general trends and issues, such as combining different BCIs or assessing and comparing performance? This book chapter provides an overview of the different sections of this book, providing a summary of how authors address these and other questions. We also present some predictions and recommendations that ensue from our experience from discussing these and other issues with our authors and other researchers and developers within the BCI community. We conclude that, although some directions are hard to predict, the field is definitely growing and changing rapidly, and will continue doing so in the next several years

    Dimensions of Neural-symbolic Integration - A Structured Survey

    Full text link
    Research on integrated neural-symbolic systems has made significant progress in the recent past. In particular the understanding of ways to deal with symbolic knowledge within connectionist systems (also called artificial neural networks) has reached a critical mass which enables the community to strive for applicable implementations and use cases. Recent work has covered a great variety of logics used in artificial intelligence and provides a multitude of techniques for dealing with them within the context of artificial neural networks. We present a comprehensive survey of the field of neural-symbolic integration, including a new classification of system according to their architectures and abilities.Comment: 28 page
    • 

    corecore