61,779 research outputs found

    The potential of additive manufacturing in the smart factory industrial 4.0: A review

    Get PDF
    Additive manufacturing (AM) or three-dimensional (3D) printing has introduced a novel production method in design, manufacturing, and distribution to end-users. This technology has provided great freedom in design for creating complex components, highly customizable products, and efficient waste minimization. The last industrial revolution, namely industry 4.0, employs the integration of smart manufacturing systems and developed information technologies. Accordingly, AM plays a principal role in industry 4.0 thanks to numerous benefits, such as time and material saving, rapid prototyping, high efficiency, and decentralized production methods. This review paper is to organize a comprehensive study on AM technology and present the latest achievements and industrial applications. Besides that, this paper investigates the sustainability dimensions of the AM process and the added values in economic, social, and environment sections. Finally, the paper concludes by pointing out the future trend of AM in technology, applications, and materials aspects that have the potential to come up with new ideas for the future of AM explorations

    Enhancement Opportunities for Conceptual Design in Aerospace Based on the Advanced Morphological Approach

    Get PDF
    The current challenges facing the aerospace domain require unconventional solutions, which could be sought in new configurations of future aircraft and spacecraft. The choice of optimal concepts requires the consideration of a significant amount of competing engineering solutions and takes place under conditions of uncertainty. Such a problem can be addressed by enhancing existing methods for analysis and synthesis solutions, such as the Advanced Morphological Approach (AMA). It uses morphological analysis to provide a more exhaustive overview of possible problem solutions, relies on expert evaluations of alternative technological options and applies clustering to the solution space. Although an intuitive method for structured concept generation, the AMA exposes the need for more robust problem structuring, improved objectivity of options evaluation and accounting for uncertainties. The current article suggests ways to overcome these challenges and their possible integration in the process. In particular, the integration of fuzzy sets is proposed to model uncertainties during the evaluation of technological options by the experts. The Fuzzy Analytical Hierarchy Process is adapted for integration into the AMA and for the conceptual design of aerospace vehicles.DFG, 443831887, Konzeptentwurf und -modellierung komplexer energieeffizienter Flugsysteme unter Nutzung eines fortschrittlichen morphologischen Ansatze

    SciTech News Volume 70, No. 4 (2016)

    Get PDF
    Columns and Reports From the Editor 3 Division News Science-Technology Division 4 SLA Annual Meeting 2016 Report (S. Kirk Cabeen Travel Stipend Award recipient) 6 Reflections on SLA Annual Meeting (Diane K. Foster International Student Travel Award recipient) 8 SLA Annual Meeting Report (Bonnie Hilditch International Librarian Award recipient)10 Chemistry Division 12 Engineering Division 15 Reflections from the 2016 SLA Conference (SPIE Digital Library Student Travel Stipend recipient)15 Fundamentals of Knowledge Management and Knowledge Services (IEEE Continuing Education Stipend recipient) 17 Makerspaces in Libraries: The Big Table, the Art Studio or Something Else? (by Jeremy Cusker) 19 Aerospace Section of the Engineering Division 21 Reviews Sci-Tech Book News Reviews 22 Advertisements IEEE 17 WeBuyBooks.net 2

    An ontology framework for developing platform-independent knowledge-based engineering systems in the aerospace industry

    Get PDF
    This paper presents the development of a novel knowledge-based engineering (KBE) framework for implementing platform-independent knowledge-enabled product design systems within the aerospace industry. The aim of the KBE framework is to strengthen the structure, reuse and portability of knowledge consumed within KBE systems in view of supporting the cost-effective and long-term preservation of knowledge within such systems. The proposed KBE framework uses an ontology-based approach for semantic knowledge management and adopts a model-driven architecture style from the software engineering discipline. Its phases are mainly (1) Capture knowledge required for KBE system; (2) Ontology model construct of KBE system; (3) Platform-independent model (PIM) technology selection and implementation and (4) Integration of PIM KBE knowledge with computer-aided design system. A rigorous methodology is employed which is comprised of five qualitative phases namely, requirement analysis for the KBE framework, identifying software and ontological engineering elements, integration of both elements, proof of concept prototype demonstrator and finally experts validation. A case study investigating four primitive three-dimensional geometry shapes is used to quantify the applicability of the KBE framework in the aerospace industry. Additionally, experts within the aerospace and software engineering sector validated the strengths/benefits and limitations of the KBE framework. The major benefits of the developed approach are in the reduction of man-hours required for developing KBE systems within the aerospace industry and the maintainability and abstraction of the knowledge required for developing KBE systems. This approach strengthens knowledge reuse and eliminates platform-specific approaches to developing KBE systems ensuring the preservation of KBE knowledge for the long term

    Aerated blast furnace slag filters for enhanced nitrogen and phosphorus removal from small wastewater treatment plants

    Get PDF
    Rock filters (RF) are a promising alternative technology for natural wastewater treatment for upgrading WSP effluent. However, the application of RF in the removal of eutrophic nutrients, nitrogen and phosphorus, is very limited. Accordingly, the overall objective of this study was to develop a lowcost RF system for the purpose of enhanced nutrient removal from WSP effluents, which would be able to produce effluents which comply with the requirements of the EU Urban Waste Water Treatment Directive (UWWTD) (911271lEEC) and suitable for small communities. Therefore, a combination system comprising a primary facultative pond and an aerated rock filter (ARF) system-either vertically or horizontally loaded-was investigated at the University of Leeds' experimental station at Esholt Wastewater Treatment Works, Bradford, UK. Blast furnace slag (BFS) and limestone were selected for use in the ARF system owing to their high potential for P removal and their low cost. This study involved three major qperiments: (1) a comparison of aerated vertical-flow and horizontal-flow limestone filters for nitrogen removal; (2) a comparison of aerated limestone + blast furnace slag (BFS) filter and aerated BFS filters for nitrogen and phosphorus removal; and (3) a comparison of vertical-flow and horizontal-flow BFS filters for nitrogen and phosphorus removal. The vertical upward-flow ARF system was found to be superior to the horizontal-flow ARF system in terms of nitrogen removal, mostly thiough bacterial nitrification processes in both the aerated limestone and BFS filter studies. The BFS filter medium (whieh is low-cost) showed a much higher potential in removing phosphortls from pond effluent than the limestone medium. As a result, the combination of a vertical upward-flow ARF system and an economical and effective P-removal filter medium, such as BFS, was found to be an ideal optionfor the total nutrient removal of both nitrogen and phosphorus from wastewater. In parallel with these experiments, studies on the aerated BFS filter effective life and major in-filter phosphorus removal pathways were carried out. From the standard batch experiments of Pmax adsorption capacity of BFS, as well as six-month data collection of daily average P-removal, it was found that the effective life of the aerated BFS filter was 6.5 years. Scanning electron microscopy and X-ray diffraction spectrometric analyses on the surface of BFS, particulates and sediment samples revealed that the apparent mechanisms of P-removal in the filter are adsorption on the amorphous oxide phase of the BFS surface and precipitation within the filter

    Modelling iteration in engineering design

    Get PDF
    This paper examines design iteration and its modelling in the simulation of New Product Development (NPD) processes. A framework comprising six perspectives of iteration is proposed and it is argued that the importance of each perspective depends upon domain-specific factors. Key challenges of modelling iteration in process simulation frameworks such as the Design Structure Matrix are discussed, and we argue that no single model or framework can fully capture the iterative dynamics of an NPD process. To conclude, we propose that consideration of iteration and its representation could help identify the most appropriate modelling framework for a given process and modelling objective, thereby improving the fidelity of design process simulation models and increasing their utility

    Towards Fully Additively-Manufactured Permanent Magnet Synchronous Machines: Opportunities and Challenges

    Get PDF
    With the growing interest in electrification and as hybrid and pure electric powertrains are adopted in more applications, electrical machine design is facing challenges in terms of meeting very demanding performance metrics for example high specific power, harsh environments, etc. This provides clear motivation to explore the impact of advanced materials and manufacturing on the performance of electrical machines. This paper provides an overview of additive manufacturing (AM) approaches that can be used for constructing permanent magnet (PM) machines, with a specific focus on additively-manufactured iron core, winding, insulation, PM as well as cooling systems. Since there has only been a few attempts so far to explore AM in electrical machines (especially when it comes to fully additively-manufactured machines), the benefits and challenges of AM have not been comprehensively understood. In this regard, this paper offers a detailed comparison of multiple multi-material AM methods, showing not only the possibility of fully additively-manufactured PM machines but also the potential significant improvements in their mechanical, electromagnetic and thermal properties. The paper will provide a comprehensive discussion of opportunities and challenges of AM in the context of electrical machines

    Virtual Integration Platforms (VIP) –A Concept for Integrated and Interdisciplinary Air Transportation Research and Assessment

    Get PDF
    The paper descibes a new methodology for a holistic development of air transportation concepts. The Virtual Integration Plattform (VIP) concept is based on an IT tool chain as well as human collaborative methods to deal with complex systems. As a result the definitions of future air transportation concepts for short range "Quiet and Clean", long range "Comfortable and Clean" and individual transport "Fast and Flexible" are presente
    • …
    corecore