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Abstract: The current challenges facing the aerospace domain require unconventional solutions,
which could be sought in new configurations of future aircraft and spacecraft. The choice of optimal
concepts requires the consideration of a significant amount of competing engineering solutions
and takes place under conditions of uncertainty. Such a problem can be addressed by enhancing
existing methods for analysis and synthesis solutions, such as the Advanced Morphological Approach
(AMA). It uses morphological analysis to provide a more exhaustive overview of possible problem
solutions, relies on expert evaluations of alternative technological options and applies clustering
to the solution space. Although an intuitive method for structured concept generation, the AMA
exposes the need for more robust problem structuring, improved objectivity of options evaluation
and accounting for uncertainties. The current article suggests ways to overcome these challenges
and their possible integration in the process. In particular, the integration of fuzzy sets is proposed
to model uncertainties during the evaluation of technological options by the experts. The Fuzzy
Analytical Hierarchy Process is adapted for integration into the AMA and for the conceptual design
of aerospace vehicles.

Keywords: conceptual design in aerospace; advanced morphological approach; fuzzy sets

1. Introduction

The most important stage in the design of innovative aircraft systems is the concept
design phase [1]. Mistakes at this stage might lead to significant increases in cost and lead
time and could have a fatal impact on the project. The configuration of the aircraft obtained
in the conceptual design stage is numerically simulated and modified in the preliminary
design. In most cases, preliminary design approaches are based on development trends
derived from databases and statistics [2]. However, this is not the case when aiming to
develop innovative aircraft configurations, since breakthrough technologies lack experi-
mental and statistical data. The non-metric character of design parameters, as well as the
conflicting criteria, represent further challenges of conceptual design. The target function of
a potential optimization problem could hardly be solved by common theoretical methods
since it is discontinuous; it cannot always be defined; it exists in the operator notation; it is
not based on analytical expressions; it is not differentiable, not unimodal, not separable and
not additive [3]. Additionally, the circumstances in the aviation domain put forward the
necessity for a technological breakthrough. The sector is forced to address the demands for
higher efficiency and drastic emission reduction, while no short-term technological answer
is yet in sight [4,5].

Along with heuristic methods, morphological analysis (MA) is used during the con-
ceptual design phase [2,6]. It allows the generation of a significantly wider space of possible
problem solutions than conventional methods such as brainstorming and helps to avoid the
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aforementioned conceptual design challenges. This is achieved by decomposing the prob-
lem into (sub-)functional and characteristic components (denoted as “attributes”). Each
attribute is assigned to a set of appropriate technological options (denoted in the following
as “options”). The attributes and their corresponding options are organized in a morpho-
logical matrix (MM). An example MM excerpt for the conceptual design of an unmanned
aerial system is shown in Figure 1. The entity of all possible attribute–option combinations
defines the solution space. The significant amount of synthesized configurations in such a
way increases the possibility to find the optimal solution even for a non-conventional or
demanding problem statement. In such situations, the optimal solutions can be overseen
by conventional idea generation methods.

Figure 1. An excerpt from the morphological matrix for the structural synthesis of an unmanned
aerial system. Data from ref. [7].

MA has been applied to the conceptual design of aerospace vehicles within the Ad-
vanced Morphological Approach (AMA), developed by Rakov and Bardenhagen [7,8].
The method extends the classical MA by integrating qualitative expert evaluations of the
options and by offering an intuitive solution space exploration. The AMA steps can be
summarized as follows [7–9]: (1) problem statement definition; (2) definition of the MM and
a set of evaluation criteria; (3) evaluation of the technological options by domain experts
according to each criterion; (4) inclusion of reference solutions based on existing aerospace
vehicle configurations; (5) definition of impossible combinations of options for different
attributes; (6) generation of the solution space; (7) clustering of the generated solutions
based on the given expert evaluations; (8) visualization and reporting.

A simplified diagram of the methodology is presented in Figure 2. From the generated
vast solution space in the MM, the method picks a limited amount of superior solutions
based on their criteria evaluations [7,10]. Hence, the AMA represents a structured way
to intuitively find optimal solutions to a given problem and avoid the aforementioned
challenges of conceptual design. The application of AMA in the aerospace domain has
been demonstrated on the conceptual design of unmanned aerial vehicles [7] and orbital
reentry vehicles [11] (Figure 3).

Along with the mentioned benefits, the current AMA comes with a set of challenges
and corresponding improvement possibilities, which have been presented by Todorov et al.
in [12]. These are namely (a) uncertainty handling, (b) improved problem structuring and
(c) multidisciplinary expert judgment elicitation.

The issue of dominating uncertainties (a) within AMA is faced during step 3 of
the process: the evaluation of options by domain experts (further referred to as “experts”,
“decision-makers” or DMs). The method requires the DMs to evaluate each option according
to a certain criterion by assigning an integer value from the qualitative scale between 1
(worst) and 9 (best). However, it is not always clear whether the quality of option A is,
for example, “very good” or just “good”. Such hesitation could result in a deviation of
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several units on the scale from the answer that is “ultimately correct” and thus reduces the
reliability of the final results. This uncertainty could further increase due to the fact that
the evaluation objects are innovative technologies lacking statistical and experimental data.
Although the DMs are domain experts in the best-case scenario, they could naturally also
lack precise knowledge on an untested or non-introduced technology.

Figure 2. An overview of the AMA method. Reprinted from ref. [12].

Figure 3. Reference solutions in the morphological solution space for the conceptual design tasks for
an orbital reentry vehicle (left) and an unmanned aerial vehicle (right). Reprinted from refs. [7,11].

Further inaccuracy in the AMA outcome could result from the lack of consideration of
technological options’ interactions. Along with their separate evaluations mentioned above,
certain technological combinations may additionally increase the overall value of particular
configurations, which should also be reflected in the results. This aspect is acknowledged
and is outlined in the future work recommendations for the improvement of the AMA.

Problem structuring (b) becomes an issue when the product to be designed represents
a complex engineering solution such as an aerospace vehicle. This case requires a more
thorough structural decomposition and the appropriate organization and weighting of
components and criteria. This is necessary to properly reflect the complex functional
division of sub-systems. The selection of appropriate problem structuring also requires
the definition of evaluation aspects such as which evaluation scale to use or whether the
evaluations should be absolute or pairwise comparative. Furthermore, the issue is also
linked to the choice of an uncertainty modeling method.
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The current article addresses the issues and the improvement possibilities for address-
ing uncertainties (a) and defining a robust problem structuring (b) for the AMA. Section 2
will first handle the classification of uncertainties and outline which uncertainties one faces
during the option evaluations within the AMA. The choice of ordinary or Type 1 fuzzy sets
as an approach for addressing the uncertainties among other possibilities is explained. Af-
ter introducing their general definition, different types of fuzzy sets are briefly summarized.
A way to integrate fuzzy numbers in the AMA is then suggested. Section 3 will address the
issue of problem structuring. First, a classification of Multiple-Criteria Decision-Making
methods is presented and the advantages of using Fuzzy Multiple-Attribute Decision-
Making methods for the enhancement of the AMA are justified. Ultimately, an approach is
suggested to incorporate the Fuzzy Analytic Hierarchy Process for the conceptual design
of aerospace vehicles with the AMA.

2. Addressing Uncertainties

The conceptual design of a new aircraft generation is characterized by a significant
amount of unknown information on innovative technologies. At the same time, the deci-
sions made during this design phase also influence the development of the next design
stages [7]. For aerospace vehicles, incorrect conceptual decisions can result in project delays
and financial drawbacks. For this reason, situations associated with a significant lack of
data require the anticipation of possible deviations and thus suitable models to describe
uncertainties. This is the case with evaluations of options by expert groups in the AMA.

2.1. Uncertainty Classification

The most used taxonomy to classify uncertainties comes from the field of risk assess-
ment and considers two main types: aleatory and epistemic uncertainty [13,14]. Aleatory
(also stochastic) uncertainty is defined as the inherent variation of a system or the envi-
ronment. Although well recognizable, it cannot be reduced or avoided. At the same time,
epistemic uncertainty (also cognitive or subjective) results from the inaccurate modeling
of a system or a process due to a lack of knowledge. Increasing the available data or
knowledge on the matter could thus help to reduce epistemic uncertainty.

Worth noting is also the taxonomy suggested by Thunnissen [14,15], which introduces
further types of uncertainty besides the ones already presented. These are the ambiguity in
terms of imprecision or vagueness, as well as the uncertainty caused by the interaction of
multiple disciplines or events (interaction uncertainty).

When focusing on the design of complex systems such as aerospace vehicles, further
uncertainty classes have been suggested that relate rather to more precise modeling of
system parameters [14]. These are the uncertainties coming from inaccurate design prob-
lem formulations, such as due to the operational environment, measurement, as well as
modeling and numerical errors.

However, the conceptual design phase implies the definition of the initial vehicle struc-
ture. This task depends vastly on efficient interdisciplinary communication. The “correct”
decision-making at this early stage requires proper qualitative modeling of technologies
with scarce available knowledge rather than the reduction of measurement or numerical
errors. For this reason, one can outline epistemic uncertainty, ambiguity and disciplinary
interaction as the primary sources of deviations from the optimal conceptual design of
new aerospace vehicle generations. Since the latter two categories involve a lack of knowl-
edge and sub-optimal information exchange, these will be also considered as epistemic
uncertainties in the current article.

This classification helps to identify the types of uncertainties that need to be addressed
or at least acknowledged within the AMA method. Potential sources of uncertainties can
be found in the evaluation of technological options. Particularly, subjective results could be
obtained in the following cases:

1. When an expert estimates the quality of an option according to a certain criterion.
Subjective assessments can be due to the following drawbacks:
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- Epistemic uncertainty—the lack of knowledge on untested or non-introduced
technologies;

- Cognitive bias—the unconscious heuristics people use to solve uncertain tasks,
which may lead to systematic errors [16].

2. During group discussions of a certain technology by experts from different expertise
domains (disciplinary interaction).

3. As a result of aggregation of multiple expert opinions—be it behavioral (group dis-
cussions) or mathematical.

The current article suggests that epistemic uncertainty during option evaluation
could be accounted for by introducing an appropriate modeling approach, which will be
discussed in the following. Handling cognitive bias, disciplinary interaction and assessment
aggregation from multiple experts could be considered as research topics linked to the
development, structuring and conduction of the expert workshops and are not discussed
in the present work.

2.2. Uncertainty Modeling Approaches

The main requirement for the modeling of epistemic uncertainty is the ability to
quantify and map the uncertain areas during decision-making onto an intuitive and robust
process. It is thus necessary to find a proper mathematical and computational representation
of this uncertainty type.

Zang et al. [17] summarize three ways to represent uncertainties in a computer code
used for modeling and simulation. These are the interval bound, the membership function
and the probability density function (PDF), shown in Figure 4. The methods incorporate dif-
ferent theories to describe uncertainties. Based on the classical probability theory, the PDF
offers uncertainty modeling with the highest detail among the three mentioned options.
However, it hides certain drawbacks when dealing with problem statements lacking sta-
tistical data [18]. Firstly, the choice of a suitable probability distribution requires prior
experimental data. Secondly, PDFs aim to “represent one’s degree of belief that a specific
realization of a parametric value, physical process, or event can occur” [18] (p. 2). This type
of uncertainty modeling has already been applied in the aerospace domain. The works of
Monroe [19] and Unal et al. [20] describe an expert judgment elicitation methodology for the
conceptual design of innovative launch vehicles. They use qualitative expert input in order
to quantify the uncertainties through probability distributions. The parameters that were
estimated by the experts referred to deterministic characteristics such as system weight
and cost. Since the technologies used for the design in those works were supposed to be
“extrapolated” from existing systems of that time [20], one could assume that the aerospace
experts involved had some initial experience and statistical data on the technologies to
lean on.

Figure 4. Ways to describe uncertainty. Reprinted from ref. [17].

However, the AMA strives not only to include technological options derived from
ones already in operation, but also to consider technologies lacking any prior experimental
data. Therefore, the uncertainties to be modeled are not referred to the concrete estimation
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of aircraft characteristics such as weight or certain flight qualities but rather a higher-level
qualitative comparison of more abstract combinations of technological options.

At the same time, the interval bound defines solely the upper and lower limits of the
possible value range and offers a very simplified approximation [17].

The membership function is a mathematical tool used in the fuzzy logic and fuzzy set
theory to describe fuzzy sets, introduced by Lotfi Zadeh in 1965 [21], and is “particularly
well-suited for handling incomplete information, the unsharpness of classes of objects or
situations, or the gradualness of preference profiles” [22] (p. 4). This approach allows us to
mathematically model events or statements, which can be semantically assigned to multiple
parameter values simultaneously [21,22]. Such a philosophy could be used to represent
subjective, ambiguous and vague statements made by experts for decision-making tasks
during early conceptual design, which corresponds to the evaluation of options within
the AMA.

2.3. Fuzzy Sets

An ordinary (so-called Type 1) fuzzy set Ã is formally defined by a given set X and a
membership function µ(x), which maps every x ∈ X to a real value from the interval [0, 1]
(Equations (1) and (2)) [22,23]. The function reflects the “grade of membership” of each x
in Ã.

Ã = {(x, µÃ(x))|x ∈ X} (1)

µÃ(x) : X → [0, 1] (2)

Such a definition allows to model uncertainties by assigning a suitable membership
function to an unsharp linguistic statement. This is achieved by considering the “level
of truth” or the “grade of membership” of the statement for each parameter value x. For
example, one could use fuzzy sets to represent the vague definition “wise” by subjectively
assigning it to a person’s age, as depicted in Figure 5. Since there exists no definite
age threshold between defining a person as “wise” and “not wise”, the fictional DM has
decided to place ages between 30 and 75 in an uncertain area, where wisdom is accumulated
nonlinearly. People aged 75 and older are assumed by this DM to fully correspond to the
definition of "wise" with full membership of µ(75 ≤ x) = 1.

1

0
30 75

Age / years

Membership

"wise"

µ(x)

x

Figure 5. A fuzzy representation of the vague adjective “wise” referring to a person’s age.

The last several decades have seen the active development of fuzzy sets through exten-
sions and generalizations of the presented ordinary case. As a result, multiple new types of
fuzzy sets have been introduced and have found applications in numerous domains [23].
A brief overview of the most used types is shown in Table 1.
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Table 1. A summary of some of the most used fuzzy set types.

Name Definition Description

Type 2 fuzzy sets [21,23] Ã = {
(
(x, u), µÃ(x, u)

)
|0 ≤ µÃ(x, u) ≤ 1} The membership function is fuzzy itself

Intuitionistic fuzzy sets [24]

Ã = {〈x, µÃ(x), νÃ(x)〉; x ∈ X}
Introduction of the non-membership νÃ(x) and
the hesitation margin πÃ [24,25]

µÃ : X → [0, 1]; νÃ : X → [0, 1]
0 ≤ µÃ + νÃ ≤ 1
πÃ(x) = 1− µÃ(x) + νÃ(x)

Hesitant fuzzy sets [26] Ã = {〈x, hÃ(x)〉|x ∈ X} The function hÃ(x) returns a subset of [0, 1]hÃ : X → J ⊂ [0, 1]

The common aspect of the given fuzzy set types is that they all introduce an additional
“grade of freedom” or dimension of fuzziness to the already existing membership. One
could interpret it as the uncertainty in the position of the membership value for each x.
The corresponding authors justify the necessity for the additional uncertainty level with
the possible hesitation of the DM when choosing the membership value µÃ(x) for each
particular element x. Kahraman et al. [27] outline multiple applications of the intuitionistic
and hesitant fuzzy sets within Fuzzy Multiple-Criteria Decision-Making methods.

The mentioned classification of fuzzy sets combines sophisticated ways to model multi-
layer uncertainty, which vary in their definitions and depth of uncertainty representation.
Therefore, it is necessary to pick the most suitable type for the particular purpose in the
first place. Secondly, one should carefully evaluate whether complex and overly abstract
uncertainty modeling would impact:

1. the comprehensibility of the evaluation process/the questionnaires for the experts,
which could reduce the results’ reliability

2. the transparency of the scientific method, thus making difficult the recreation of the
process and the results.

2.4. Integration of Fuzzy Sets into the Advanced Morphological Approach

When incorporating uncertainties into the AMA for the design of aerospace vehicles,
one should consider the specificity of the experts usually involved in this type of decision-
making task. In particular, this tends to be a multidisciplinary group of DMs from different
domains who do not necessarily have the deep statistical background encompassing the
special characteristics of complex fuzzy sets. Hence, one should find a balance between
the optimal capturing of uncertainty and not over-complicating the evaluation task, which
could lead to even greater unexplained uncertainty in the results.

For this reason, the authors suggest to start initial studies in such a context by using
simpler fuzzy sets (e.g., the ordinary one) and, if necessary, gradually increasing their
complexity while studying the experts’ perception.

The implementation of fuzzy sets is suitable for the mathematical and computational
representation of vague expert statements or evaluations during aircraft conceptual design.
At this point, an approach is suggested for the initial integration of ordinary Type 1 fuzzy
sets within the AMA. It implies that the expert evaluations of a given technology could
be described as membership functions. For this purpose, trapezoidal fuzzy numbers are
used, which were defined in [28,29] and are graphically depicted in Figure 6. Consider
the definition of a trapezoidal fuzzy number by its four distinctive points: Ã = (k, l, m, n).
These allow the DMs to divide their evaluation into two domains:

1. An interval of full certainty [l, m] with membership µÃ(x) = 1. The DM gives the
highest confidence that this qualitative interval reflects the priority of the option
according to a certain criterion as the best.

2. Uncertain intervals [k, l) and (m, n] with membership 0 < µÃ(x) < 1. The DM
expresses hesitation about these quality values of the option.
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Such a representation of the evaluations will be integrated into a suitable Multiple-
Attribute Decision-Making method in the next section.

k l m n x
Qualitative scale

Membership
function

µ(x)

1

0

Most likely interval

Figure 6. Own depiction of a trapezoidal fuzzy number.

3. Structuring the Evaluation Process through Hierarchies

The structural synthesis of promising engineering solutions through the AMA implies
problem decomposition and the evaluation of technological options. Aerospace vehicles
represent complex systems that can be defined by numerous criteria and subsystem levels.
In this case, the appropriate robust structuring and organization of the system decom-
position and the option evaluations represent a challenging task. It requires the ranking
of discrete technological options of the attributes in order to achieve a higher-level rank-
ing of the entire set of alternative problem solutions (in this case, aircraft configurations).
The methods addressing such challenges are classified as Multiple-Attribute Decision-
Making (MADM) algorithms. Following a brief overview of MADM methods, the Analytic
Hierarchy Process and its potential contribution to the enhancement of the AMA process
will be introduced. Furthermore, possibilities to use fuzzy logic within these methods will
be investigated.

3.1. Overview of Multi-Attribute Decision-Making Algorithms

Within the domain of operations research (also called decision science), Multi-Criteria
Decision-Making (MCDM) is a field that aims to offer mathematical tools for complex
decision-making tasks [30]. Two main groups of MCDM methods are distinguished:
Multiple-Objective Decision-Making (MODM) and Multiple-Attribute Decision-Making
(MADM). While the first strives to solve problems containing continuous variables, MADM
addresses tasks where the alternative scenarios represent a discrete decision space [30].
At the same time, these categories can be divided into methods using deterministic data,
denoted as crisp methods, and such that take into account uncertainties of human eval-
uations, or fuzzy ones. Accordingly, the latter are marked as Fuzzy MODM (FMODM)
and Fuzzy MADM (FMADM) methods. The nature of the AMA implies the definition
of a discrete decision space in the form of a morphological matrix. Furthermore, one of
the aims of the AMA enhancement is to account for uncertainties as well. These aspects
require the application of a Fuzzy MADM approach. For a more detailed overview of crisp
MCDM methods, the reader is encouraged to refer to the corresponding summary under
the edition of Figueira et al. [31].

The definition of a typical MCDM method consists of three main elements [30]:

• Alternative actions/options—these correspond to the technological options for each
attribute in the AMA.

• A set of criteria—for the AMA, these are the criteria against which the technological
options are evaluated.

• A problematic type—one distinguishes among the following problematic types: de-
scription, choice, sorting and ranking. The expected outcome of the AMA option
evaluation step is to obtain a reliable comparison of the technological options. Hence,
this case corresponds to the ranking problematic.
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An extensive overview of existing FMADM methods is given by Kahraman et al. [27]
as well as by Chen et al. [28]. In the majority of cases, FMADM methods have been derived
from crisp MADM algorithms. Some of the most prominent MADM methods for both crisp
and fuzzy evaluations are classified as outranking (ELECTRE, PROMETHEE), distance-
based (VIKOR, TOPSIS) and pairwise comparisons-based (Analytic Hierarchy Process,
MACBETH) [27].

3.2. Analytic Hierarchy Process

The AMA enhancement seeks an intuitive way to structure a complex multi-layer
engineering problem statement by considering multiple potentially contradicting criteria.
In this context, the Analytical Hierarchy Process (AHP) is used to handle this challenge.
The method and its potential application within the AMA will be presented in the following.

The AHP has been developed by Saaty [32] for the purpose of qualitative decision-
making based on relative pairwise comparisons of alternative options/scenarios [28,32].
One of its main features is the organization of the problem structure in a hierarchical
manner. An example of a hierarchy to select an airline to fly with based on the criteria
ticket price, airline timetable and offered comfort is shown in Figure 7.

"Best" airline

Price ComfortTimetable

Airline BAirline A

1st level
Ultimate Goal

2nd level
Criteria

3rd level
Options/Scenarios

Figure 7. An exemplary hierarchy structure for the selection of an airline to fly with.

Each hierarchy level is considered as a criterion or purpose, according to which the ele-
ments of the lower level are evaluated [32]. The evaluations of alternative options from each
single level are defined in a relative pairwise manner instead of as absolute values. Hence,
each evaluation represents a linguistic statement on the quality of option A referred to
option B against a certain criterion, e.g., option A can be much better/slightly better/equal
to/slightly worse/much worse than option B. For this purpose, a scale between 1 and 9
with the following legend is used: (1) equality; (3) weak superiority; (5) strong superiority;
(7) significant superiority; (9) absolute superiority. The even numbers in between stand for
intermediate values. Inferiority is represented by the corresponding reciprocal values. Ac-
cordingly, the quality of option B relative to option A is then defined as the reciprocal value
of the evaluation from the previous example. Such evaluations for all items of the same
level according to a certain criterion are summarized in a reciprocal matrix, represented in
Equation (3) [32]. Its elements are the pairwise comparisons aij =

ωi
ωj

, which are obtained
from the expert evaluations.

D =


ω1/ω1 ω1/ω2 . . . ω1/ωn
ω2/ω1 ω2/ω2 . . . ω2/ωn

. . . . . . . . . . . .
ωn/ω1 ωn/ω2 . . . ωn/ωn

 (3)

The next step implies using these relative evaluations aij in order to find the absolute
weights ωi of the items for the current hierarchy level [32]. In the initial crisp AHP,
Saaty showed that these absolute weights correspond, with some approximations, to the
dimension values of the main eigenvector of the mentioned reciprocal matrix. It can be
obtained by using the so-called “eigenvector method”, described by Saaty.
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After establishing the absolute weights of the elements from each single hierarchy
level separately, one can proceed with finding the importance of any single element of one
level with respect to any element from a higher one. Considering a three-level hierarchy as
in Figure 7, let ωij be the weight of the i-th element from level 3 with respect to criterion j
from level 2 and bj be the weight of the j-th element from level 2 with respect to the ultimate
goal from level 1. Then, the importance Ui of the i-th element from level 3 with respect to
the ultimate goal can be derived as the weighted sum from Equation (4) [28,32]:

Ui =
n

∑
j=1

bjωij (4)

These values can be ultimately used to rank the elements from any level according to
an element from any higher one.

4. Integration of a Fuzzy Analytical Hierarchy Process into the Advanced
Morphological Approach

It is worth noting that Saaty himself stated that the crisp AHP already integrated
a fuzzy way of thinking in some form—namely by giving the decision-makers (DMs)
the opportunity to give relative option evaluations on a qualitative scale [29]. However,
DMs could find themselves in situations where they cannot clearly assign a concrete
statement to the technology in question [29], e.g., is technology A definitely “much better”
or just “slightly better” compared to technology B? This hesitation represents the epistemic
uncertainty within the expert evaluations. Instead of being classified as unnecessary and/or
incomplete information, the vagueness of the expert opinions should be considered as
an integral part of the detailed decision-making process due to its potential impact on
the final result. Although the certainty level of such information could be considered
sub-optimal, its proper aggregation for multiple experts from diverse domains has the
potential to reduce epistemic uncertainty. This could therefore increase the reliability of
forecasts on promising technologies without prior experimental data. Such advantages
could be achieved by allowing the experts to define their evaluations as fuzzy sets.

4.1. Definition of the Main Method Parameters

To this day, multiple implementations of Fuzzy AHP (FAHP) have been introduced
in the literature, such as the approach of Laarhoven and Pedrycz, as well as the one of
Buckley [28,33]. Since the latter overcomes some drawbacks of the former one [28], is more
intuitive and allows the use of trapezoidal fuzzy numbers, Buckley’s method is used to
integrate fuzzy sets into AMA at this stage.

Before introducing its actual methodology within the AMA, a short overview of the
parameters will be given; these need to be set when defining an FAHP method for a
particular task. According to Liu et al. [29], these are:

1. Choice of appropriate fuzzy set types as a “representation of the relative importance
for pairwise comparison” [29] (p. 2);

2. Techniques for fuzzy set aggregation when multiple experts are involved in the
evaluation;

3. “Defuzzification of a fuzzy set to a crisp value for final comparison” [29] (p. 2);
4. Techniques for the consistency check of the fuzzy evaluation matrix.

As already stated in Section 2.4, ordinary fuzzy sets of Type 1 in the form of trapezoidal
fuzzy numbers have been selected for the initial consideration of uncertainties. Since the
current paper aims to outline the global methodology of the FAHP integration into the
AMA, the rest of the parameters will be left to be set in a further, more detailed definition
of the method.
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4.2. Representation of the Aerospace Vehicle Conceptual Design Problem as a Hierarchy

The FAHP is initialized by defining the given multi-criteria problem statement as
a hierarchical tree. By following the logic outlined in Section 3.2, the attributes and the
options of a given MM are used to form a comprehensible hierarchy. In this context,
the current work suggests a hierarchy structure for the conceptual design of aerospace
vehicles by using the attributes and options from the MM and the evaluation criteria.
An example hierarchy for a sample aircraft design task is presented in Figure 8.

Since the technological options are the smallest system elements in the current repre-
sentation, these are positioned at the lowest hierarchy level. The quality of each is evaluated
with respect to all criteria, defined in level 3 above. These might be qualities such as Oper-
ating Empty Weight (OEW), the aerodynamic qualities of the aircraft (L/D or “L over D
ratio”), Direct Operating Cost (DOC), different types of emissions, etc. Next, one obtains
the importance of each criterion for the corresponding system attribute (level 2). Finally,
the experts will give their priorities for the separate attributes regarding the global aircraft
concept set as the ultimate hierarchy goal.

Figure 8. Suggested hierarchy structure for the evaluation process of aircraft system elements
and their technological options. Abbreviations: OEW—Operating Empty Weight; L/D—“L over
D” or the aerodynamic qualities; Conv—conventional configuration; BWB—Blended Wing Body;
Opt—potential additional options.

One should highlight that the different attributes and their corresponding children
elements are represented as separate branches in the hierarchy, which do not interconnect.
This consideration was necessary due to the fact that the AHP implies pairwise compar-
ison evaluations of elements from the same level. In this context, one cannot compare
technological options for different attributes (e.g., electric propulsion and the conventional
aircraft configuration) or their assigned criteria (e.g., the weight of the configuration and
the weight of the propulsion subsystem).

It is important to underline that the advantage of the AHP is that the hierarchy
structure is not fixed by the methodology and can be adapted according to the needs of the
given problem statement. Hence, the presented hierarchy definition does not pretend to be
optimal for every problematic. However, it is suggested as a structured approach to extend
the MA and aid in the option evaluation, particularly in the domain of aerospace vehicle
conceptual design.

4.3. Evaluation of Hierarchy Elements with Fuzzy Sets

The most commonly used fuzzy scales for pairwise importance comparisons are the
nine- and five-level ones [29] (p. 16). In some studies, researchers fix the fuzzy numbers
denoting the varying quality. In such cases, an exemplary nine-level scale would contain
triangular fuzzy numbers with pre-defined peaks of full membership for the importance of
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one alternative over the other such as: equal-(1,1,2); weak-(2,3,4), strong-(4,5,6); significant-
(6,7,8); absolute-(8,9,9) [29]. Here, the (a, b, c) format denotes the significant points of a
triangular fuzzy number, where b is the peak with full membership of 1 and a and c are the
limits of the number with membership 0 and are connected linearly to b.

However, the aim of the AMA enhancement is to give the experts more freedom in
the representation of their opinions, rather than just providing them with a fixed set of
pre-defined fuzzy numbers. Therefore, a nine-degree scale is suggested, where each degree
is assigned a linguistic meaning. The experts are then allowed to express their preferences
by freely defining and positioning a trapezoidal fuzzy number per evaluation. Figure 9
shows a single exemplary expert evaluation stating that technology A is “approximately
from strongly to significantly superior” to technology B.

Figure 9. Suggested approach to evaluate the pairwise comparison of technological option A to
option B with respect to a certain criterion.

The presented scale so far describes only the superiority degree of one option over
another. As mentioned in Section 3.2, the classical crisp AHP defines option inferiority as
the corresponding reciprocal crisp number. For the FAHP, Buckley [28,33] represents the
evaluations of inferior options by mirroring the base values of the trapezoidal fuzzy number
and taking their reciprocal values [28] (p. 359). For example, if the superiority of tech-
nology A over technology B is defined by the trapezoidal fuzzy number ãAB = (3, 5, 6, 8),
as shown in Figure 9, then the inferiority of technology B to technology A would be
ãBA = (1/8, 1/6, 1/5, 1/3). One could also use the same nine-degree scale for the expert
evaluation task. However, the expert would need to specify whether the current evaluation
is about an inferior option, so that the reciprocal fuzzy number is taken afterwards.

Based on the defined hierarchy structure, the experts give their pairwise relative
evaluations for each element of the corresponding hierarchy level. Consider the example
hierarchy presented in Figure 8. The evaluations made by a single expert of the Blended
Wing Body (BWB) configuration in comparison to the other configurations (same hierarchy
level) and with respect to the aircraft OEW could be as shown in Figure 10.

These evaluations are obtained for each element of each corresponding level in order
to be placed in the comparison matrices. Equation (5) shows the structure of a reciprocal
comparison matrix, where aijk is the fuzzy trapezoidal comparison of option i with option j
made by the k-th expert (for the total of n options and p elements) [28].

D =


(1, 1, 1, 1) a121; a122; . . .; a12p . . . a1n1; a1n2; . . .; a1np

. . . . . . . . . . . .

. . . aij1; aij2; . . .; aijp . . . . . .

. . . . . . . . . . . .
an11; an12; . . .; an1p an21; an22; . . .; an2p . . . (1, 1, 1, 1)

 (5)
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Subsequently, the evaluations of all experts should be aggregated for each option.
As previously mentioned, the choice of the most appropriate aggregation method is left as
a topic for future investigations.

Figure 10. Example of pairwise comparisons made by a single expert of the BWB configuration
referred to the configurations twin fuselage, canard and the conventional one, with respect to the
OEW criterion.

4.4. Buckley’s Approach for the Implementation of Fuzzy Analytic Hierarchy Process

Once all aggregated evaluations have been acquired and organized into the corre-
sponding comparison matrices, Buckley’s FAHP approach can be applied to obtain the
global weights of the options [28] (p. 356). This is outlined in the following steps [28]:

(1) Calculation of the fuzzy weights ωi for the elements of the same hierarchy level.
For this purpose, the geometric mean zi for each row (corresponding to option i) of

the reciprocal comparison matrix is estimated first (Equation (6)). The fuzzy weight ωi is
then calculated by referring the corresponding geometric mean of the row zi to the sum of
the geometric means in all rows, as shown in Equation (7). The signs ⊕ and � stand for
fuzzy addition and fuzzy multiplication, as defined in [28] (pp. 353–356), respectively.

zi = (ai1 � . . .� ain)
1/n (6)

ωi = zi � (z1 ⊕ . . .⊕ zn)
−1 (7)

(2) Estimation of the global importance of the options over all hierarchy levels. This
is achieved by following the logic of the original crisp AHP. The importance of each i-th
option Ui is derived as the sum of the option weights ωi,j each multiplied by the weight bj
of the corresponding element j from the higher level of the hierarchy.

Ui =
n

∑
j=1

bjωij (8)

5. Discussion

Along with the detailed descriptions of the presented methods in the sections above,
it is necessary to underline the novelties suggested in the current article for the field of
conceptual aircraft design. Furthermore, the findings will be positioned within the context
of the existing literature on the subject.

The choice of the most suitable configuration within the AMA depends on the evalua-
tions of technological options by a group of dedicated experts. Thus far, this process has
been defined solely through the structure of the morphological matrix, namely the system
attributes and their corresponding technological options, as well as by the evaluation
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criteria. The evaluations’ reliability can be increased not only by introducing uncertainty
modeling, but also by representing the complex problem definitions and the evaluation
process in a structured way. For this purpose, the Fuzzy Analytic Hierarchy Process has
been adapted for its use in the AMA. This was possible through the suggested novel defini-
tion of the aerospace vehicle design problem as an intuitive hierarchy structure, a concrete
format for potential evaluation questions as well as an appropriate fuzzy evaluation scale.

The improved organization of criteria intuitively follows the levels of importance of
attributes and subsystems. This logical yet flexible structure not only allows us to conduct
the evaluation process in a formalized order; it also gives the experts the opportunity to
discuss whole groups of alternatives from the same hierarchy level simultaneously. This
makes it possible to widen the discussion and take into account aspects that could be left
out when evaluating each option separately.

It is also important to position the findings among existing sources on the use of fuzzy
sets and MADM or (F)AHP methods in the aviation domain. Thus far, these have been
applied to abstract and non-deterministic problems mostly in the field of aeronautical
operations or to answer organizational questions. The methods have been used, e.g., for the
assessment of technical factors in aviation safety [34], the evaluation and ranking of green
airlines [35], the assessment of factors to reduce fuel consumption [36] and the evaluation
of aircraft efficiency [37]. Additionally, AHP has been applied to develop advanced brain-
storming methods for the design of novel aircraft configurations, e.g., cryogenic planes
in [38].

However, there is still a gap in the systematic idea generation and analysis of alter-
native aerospace vehicle concepts, particularly when using innovative technologies with
dominating uncertainties. Therefore, the current article addresses these challenges by
extending the AMA.

At this point, it is necessary to outline recommendations in order to continue the
purposeful AMA enhancement in the specified direction. Firstly, the presented uncertainty
modeling through fuzzy trapezoidal numbers and the given hierarchy structures should
be integrated into a full-scale structured expert judgment elicitation framework. This will
define in full detail the planning, conduction and evaluation of the expert workshops
by using the presented novel approach. Secondly, a study should be conducted for the
purpose of choosing the proper aggregation method for fuzzy evaluations by different
experts. In this context, one could also consider the professional background of each
expert, which could justify a certain weighting scheme for the marks given by experts
from different domains. Furthermore, a strategy should be found to consider possible
interactions of technological options contributing to the overall solution evaluation. Finally,
in the event that the necessity for the deeper modeling of uncertainties arises, one could
study the use of other fuzzy number types instead of the ordinary Type 1 ones.

6. Conclusions

There are currently multiple limitations and challenges during the conceptual design
phase of innovative aerospace vehicles, particularly in the context of idea generation and
concept evaluation. In this context, the Advanced Morphological Approach still exhibits
the methodological gaps of dominating uncertainties and the lack of robust structuring for
complex engineering solutions. The current article suggests concrete approaches to model
uncertainties via fuzzy sets, structure the conceptual design problematic and formalize
the evaluation of technological alternatives. The proposed methods have the potential to
offer a new level of reliability for the decisions on innovative technologies made during the
conceptual design phase in aerospace.

Existing taxonomies of uncertainties have been studied in order to identify the uncer-
tainty types present in the AMA process. During the evaluations of technological options,
one faces unmeasurable epistemic uncertainties, which are mostly due to the lack of sta-
tistical data and expert knowledge on untested innovative technologies. After outlining
multiple approaches for uncertainty modeling, this work justifies the use of fuzzy sets for
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the representation of epistemic uncertainty within aerospace conceptual design. In particu-
lar, a suggestion has been put forward to represent unsharp evaluation statements made by
experts through Type 1 trapezoidal fuzzy numbers.

Furthermore, the Fuzzy Analytical Hierarchy process has been chosen and integrated
into the AMA as a method to structure the evaluation of technological alternatives. In this
context, the conceptual design problematic of aerospace vehicles has been defined as a
hierarchical structure, which intuitively reflects the levels of evaluation criteria. In order
to justify the practical applicability of the presented approach, the current work suggests
a concrete format for the evaluation questions, as well as an appropriate fuzzy scale to
capture the experts’ uncertainty.

The presented enhancements of the AMA method have the potential to improve
the reliability of aerospace concept evaluations, especially when innovative and untested
technologies are involved. Therefore, it is a step towards giving the designer more inde-
pendence from already proven concepts and increasing confidence in the consideration of
unconventional aerospace configurations.

The suggested methodology is defined as one of the integral stages necessary for the
development of a much wider design method. The complex and abstract nature of the
whole approach requires the thorough definition of further AMA improvements, which
were outlined in the Section 5.

Not only does the proposed approach represent one of the multiple AMA improve-
ment stages, but it could also be used as a “stand-alone” methodological component for
similar research purposes in the aerospace domain and beyond. The authors’ vision is the
practical application of the improved AMA in the aerospace industry as well as in other
fields with demand for non-deterministic conceptual product design. In order to ensure
its smooth and intuitive application in the design process, it is planned to implement the
complex logic and operations of the novel method into a software tool with formalized
workshop instructions. In addition to the advantages of the AMA itself, the workshops
using such a design framework would allow the experts to intuitively evaluate the tech-
nology alternatives by automatically accounting for uncertainties and reducing cognitive
biases. Finally, the ultimate goal is to serve as a reliable decision-making aid when choosing
the optimal concept.
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Abbreviations
The following abbreviations are used in this manuscript:

MA Morphological Analysis
AMA Advanced Morphological Analysis
MM Morphological Matrix
Attr Attribute
Opt Option
DM Decision-Maker
PDF Probability Density Function
MCDM Multi-Criteria Decision-Making
MODM Multiple-Objective Decision-Making
MADM Multiple-Attribute Decision-Making
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FMADM Fuzzy Multiple-Attribute Decision-Making
AHP Analytical Hierarchy Process
FAHP Fuzzy Analytical Hierarchy Process
OEW Operating Empty Weight
L/D “L over D ratio” or aerodynamic performance of an aircraft
DOC Direct Operating Costs
Conv Conventional
BWB Blended Wing Body
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