31,987 research outputs found

    Investigations on electromagnetic noises and interactions in electronic architectures : a tutorial case on a mobile system

    Get PDF
    Electromagnetic interactions become critic in embedded and smart electronic structures. The increase of electronic performances confined in a finite volume or support for mobile applications defines new electromagnetic environment and compatibility configurations (EMC). With canonical demonstrators developed for tutorials and EMC experiences, this paper present basic principles and experimental techniques to investigate and control these severe interferences. Some issues are reviewed to present actual and future scientific challenges for EMC at electronic circuit level

    Distributed-memory parallelization of an explicit time-domain volume integral equation solver on Blue Gene/P

    Get PDF
    Two distributed-memory schemes for efficiently parallelizing the explicit marching-on in-time based solution of the time domain volume integral equation on the IBM Blue Gene/P platform are presented. In the first scheme, each processor stores the time history of all source fields and only the computationally dominant step of the tested field computations is distributed among processors. This scheme requires all-to-all global communications to update the time history of the source fields from the tested fields. In the second scheme, the source fields as well as all steps of the tested field computations are distributed among processors. This scheme requires sequential global communications to update the time history of the distributed source fields from the tested fields. Numerical results demonstrate that both schemes scale well on the IBM Blue Gene/P platform and the memory efficient second scheme allows for the characterization of transient wave interactions on composite structures discretized using three million spatial elements without an acceleration algorithm

    Magnetic noise reduction of in-wheel permanent magnet synchronous motors for light-duty electric vehicles

    Get PDF
    This paper presents study of a multi-slice subdomain model (MS-SDM) for persistent low-frequency sound, in a wheel hub-mounted permanent magnet synchronous motor (WHM-PMSM) with a fractional-slot non-overlapping concentrated winding for a light-duty, fully electric vehicle applications. While this type of winding provides numerous potential benefits, it has also the largest magnetomotive force (MMF) distortion factor, which leads to the electro-vibro-acoustics production, unless additional machine design considerations are carried out. To minimize the magnetic noise level radiated by the PMSM, a skewing technique is targeted with consideration of the natural frequencies under a variable-speed-range analysis. To ensure the impact of the minimization technique used, magnetic force harmonics, along with acoustic sonograms, is computed by MS-SDM and verified by 3D finite element analysis. On the basis of the studied models, we derived and experimentally verified the optimized model with 5 dBA reduction in A-weighted sound power level by due to the choice of skew angle. In addition, we investigated whether or not the skewing slice number can be of importance on the vibro-acoustic objectives in the studied WHM-PMSM.Postprint (published version

    The ANTARES Collaboration: Contributions to ICRC 2017 Part II: The multi-messenger program

    Get PDF
    Papers on the ANTARES multi-messenger program, prepared for the 35th International Cosmic Ray Conference (ICRC 2017, Busan, South Korea) by the ANTARES Collaboratio

    Electromagnetic source localization with finite set of frequency measurements

    Full text link
    A phase conjugation algorithm for localizing an extended radiating electromagnetic source from boundary measurements of the electric field is presented. Measurements are taken over a finite number of frequencies. The artifacts related to the finite frequency data are tackled with l1l_1-regularization blended with the fast iterative shrinkage-thresholding algorithm with backtracking of Beck & Teboulle.Comment: 10 page

    Research activities at the Institute of electrotechnology in the field of metallurgical melting processes

    Full text link
    A wide range of industrial metallurgical melting processes are carried out using electrothermal and electromagnetic technologies. The application of electrotechnologies offers many advantages from technological, ecological and economical point of view. Although the technology level of the electromagnetic melting installations and processes used in the industry today is very high, there are still potentials for improvement and optimization. In this paper recent applications and future development trends for efficient use of electromagnetic processing technologies in metallurgical melting processes are described along selected examples which are part of the research activities of the Institute of Electrotechnology of the Leibniz University of Hannover
    corecore