536 research outputs found

    Single-Producer/Single-Consumer Queues on Shared Cache Multi-Core Systems

    Full text link
    Using efficient point-to-point communication channels is critical for implementing fine grained parallel program on modern shared cache multi-core architectures. This report discusses in detail several implementations of wait-free Single-Producer/Single-Consumer queue (SPSC), and presents a novel and efficient algorithm for the implementation of an unbounded wait-free SPSC queue (uSPSC). The correctness proof of the new algorithm, and several performance measurements based on simple synthetic benchmark and microbenchmark, are also discussed

    Concurrent Access Algorithms for Different Data Structures: A Research Review

    Get PDF
    Algorithms for concurrent data structure have gained attention in recent years as multi-core processors have become ubiquitous. Several features of shared-memory multiprocessors make concurrent data structures significantly more difficult to design and to verify as correct than their sequential counterparts. The primary source of this additional difficulty is concurrency. This paper provides an overview of the some concurrent access algorithms for different data structures

    Lock-free Concurrent Data Structures

    Full text link
    Concurrent data structures are the data sharing side of parallel programming. Data structures give the means to the program to store data, but also provide operations to the program to access and manipulate these data. These operations are implemented through algorithms that have to be efficient. In the sequential setting, data structures are crucially important for the performance of the respective computation. In the parallel programming setting, their importance becomes more crucial because of the increased use of data and resource sharing for utilizing parallelism. The first and main goal of this chapter is to provide a sufficient background and intuition to help the interested reader to navigate in the complex research area of lock-free data structures. The second goal is to offer the programmer familiarity to the subject that will allow her to use truly concurrent methods.Comment: To appear in "Programming Multi-core and Many-core Computing Systems", eds. S. Pllana and F. Xhafa, Wiley Series on Parallel and Distributed Computin

    Real-Time Wait-Free Queues using Micro-Transactions

    Get PDF

    Brief Announcement: Jiffy: A Fast, Memory Efficient, Wait-Free Multi-Producers Single-Consumer Queue

    Get PDF
    In applications such as sharded data processing systems, data flow programming and load sharing applications, multiple concurrent data producers are feeding requests into the same data consumer. This can be naturally realized through concurrent queues, where each consumer pulls its tasks from its dedicated queue. For scalability, wait-free queues are often preferred over lock based structures. The vast majority of wait-free queue implementations, and even lock-free ones, support the multi-producer multi-consumer model. Yet, this comes at a premium, since implementing wait-free multi-producer multi-consumer queues requires utilizing complex helper data structures. The latter increases the memory consumption of such queues and limits their performance and scalability. Additionally, many such designs employ (hardware) cache unfriendly memory access patterns. In this work we study the implementation of wait-free multi-producer single-consumer queues. Specifically, we propose Jiffy, an efficient memory frugal novel wait-free multi-producer single-consumer queue and formally prove its correctness. We then compare the performance and memory requirements of Jiffy with other state of the art lock-free and wait-free queues. We show that indeed Jiffy can maintain good performance with up to 128 threads, delivers better throughput than other constructions we compared against, and consumes less memory
    • …
    corecore