1,024 research outputs found

    Practical methods for approximating shortest paths on a convex polytope in R3

    Get PDF
    AbstractWe propose an extremely simple approximation scheme for computing shortest paths on the surface of a convex polytope in three dimensions. Given a convex polytope P with n vertices and two points p, q on its surface, let dP(p, q) denote the shortest path distance between p and q on the surface of P. Our algorithm produces a path of length at most 2dP(p, q) in time O(n). Extending this result, we can also compute an approximation of the shortest path tree rooted at an arbitrary point x ∈ P in time O(n log n). In the approximate tree, the distance between a vertex v ∈ P and x is at most cdP(x, v), where c = 2.38(1 + ε) for any fixed ε > 0. The best algorithms for computing an exact shortest path on a convex polytope take Ω(n2) time in the worst case; in addition, they are too complicated to be suitable in practice. We can also get a weak approximation result in the general case of k disjoint convex polyhedra: in O(n) time our algorithm gives a path of length at most 2k times the optimal

    How to Walk Your Dog in the Mountains with No Magic Leash

    Full text link
    We describe a O(logn)O(\log n )-approximation algorithm for computing the homotopic \Frechet distance between two polygonal curves that lie on the boundary of a triangulated topological disk. Prior to this work, algorithms were known only for curves on the Euclidean plane with polygonal obstacles. A key technical ingredient in our analysis is a O(logn)O(\log n)-approximation algorithm for computing the minimum height of a homotopy between two curves. No algorithms were previously known for approximating this parameter. Surprisingly, it is not even known if computing either the homotopic \Frechet distance, or the minimum height of a homotopy, is in NP

    An Exponential Lower Bound on the Complexity of Regularization Paths

    Full text link
    For a variety of regularized optimization problems in machine learning, algorithms computing the entire solution path have been developed recently. Most of these methods are quadratic programs that are parameterized by a single parameter, as for example the Support Vector Machine (SVM). Solution path algorithms do not only compute the solution for one particular value of the regularization parameter but the entire path of solutions, making the selection of an optimal parameter much easier. It has been assumed that these piecewise linear solution paths have only linear complexity, i.e. linearly many bends. We prove that for the support vector machine this complexity can be exponential in the number of training points in the worst case. More strongly, we construct a single instance of n input points in d dimensions for an SVM such that at least \Theta(2^{n/2}) = \Theta(2^d) many distinct subsets of support vectors occur as the regularization parameter changes.Comment: Journal version, 28 Pages, 5 Figure

    Computational Geometry Column 42

    Get PDF
    A compendium of thirty previously published open problems in computational geometry is presented.Comment: 7 pages; 72 reference

    Metric combinatorics of convex polyhedra: cut loci and nonoverlapping unfoldings

    Full text link
    This paper is a study of the interaction between the combinatorics of boundaries of convex polytopes in arbitrary dimension and their metric geometry. Let S be the boundary of a convex polytope of dimension d+1, or more generally let S be a `convex polyhedral pseudomanifold'. We prove that S has a polyhedral nonoverlapping unfolding into R^d, so the metric space S is obtained from a closed (usually nonconvex) polyhedral ball in R^d by identifying pairs of boundary faces isometrically. Our existence proof exploits geodesic flow away from a source point v in S, which is the exponential map to S from the tangent space at v. We characterize the `cut locus' (the closure of the set of points in S with more than one shortest path to v) as a polyhedral complex in terms of Voronoi diagrams on facets. Analyzing infinitesimal expansion of the wavefront consisting of points at constant distance from v on S produces an algorithmic method for constructing Voronoi diagrams in each facet, and hence the unfolding of S. The algorithm, for which we provide pseudocode, solves the discrete geodesic problem. Its main construction generalizes the source unfolding for boundaries of 3-polytopes into R^2. We present conjectures concerning the number of shortest paths on the boundaries of convex polyhedra, and concerning continuous unfolding of convex polyhedra. We also comment on the intrinsic non-polynomial complexity of nonconvex polyhedral manifolds.Comment: 47 pages; 21 PostScript (.eps) figures, most in colo
    corecore