
Computational
Geometry

Theory and Applications
ELSEVIER Computational Geometry 10 (1998) 31-46

Practical methods for approximating shortest paths on a convex
polytope in R 3

John Hershberger a,*, Subhash Suri b

" Mentor Graphics, 1001 Ridder Park Drive, San Jose, CA 95131, USA
b Department of Computer Science, Washington Universit 3, St. Louis, MO 63130, USA

Communicated by J.-R. Sack; submitted 3 February 1996; accepted 20 December 1996

Abstract

We propose an extremely simple approximation scheme for computing shortest paths on the surface of a convex
polytope in three dimensions. Given a convex polytope P with rz vertices and two points p, q on its surface,
let dp(p, q) denote the shortest path distance between p and q on the surface of P. Our algorithm produces a
path of length at most 2dp(p, q) in time O(n). Extending this result, we can also compute an approximation
of the shortest path tree rooted at an arbitrary point z E P in time O(n log n). In the approximate tree, the
distance between a vertex v c P and x is at most cdp (x , v) , where c = 2.38(1 + c) for any fixed c > 0. The
best algorithms for computing an exact shortest path on a convex polytope take ~ (n 2) time in the worst case;
in addition, they are too complicated to be suitable in practice. We can also get a weak approximation result in
the general case of k disjoint convex polyhedra: in O(n) time our algorithm gives a path of length at most 2k
times the optimal. © 1998 Elsevier Science B.V.

Keywords." Shortest path; Approximation; Convex polyhedron; Shortest path tree

1. I n t r o d u c t i o n

Shortest paths are an important topic of research in computat ional geometry, in part due to their
natural applications in robotics and motion planning. One of the best-studied problems in this area is
to compute Euclidean shortest paths in an environment containing polyhedral obstacles. In two dimen-
sions, an algorithm with t ime complexi ty O (n 2 log n) has been known since the late seventies [12,17],
based on the notion of a "visibility graph"; n is the total number of vertices in all the obstacles.
Despite numerous attempts to improve the worst-case time complexity, the problem was not solved
until very recently, when Hershberger and Suri [10] obtained an optimal O (n log n) t ime algorithm.

~' A preliminary version of this paper appeared in the Proceedings of the 6th Annual ACM-SIAM Symposium on Discrete
Algorithms, 1995.

* Corresponding author.

0925-7721/98/$19.00 © 1998 Elsevier Science B.V. All rights reserved.
PH S0925-7721 (97)00004-7

32 J. Hershberger, S. Suri / Computational Geometry 10 (1998) 31-46

The three-dimensional version of the shortest path problem turns out to be much more difficult. The
problem is no longer even "discrete" because a shortest path may turn at interior points of polyhedral
edges, and thus has a continuum of possible "corners". In fact, the problem has two separate sources of
difficulty: the combinatorial component, which requires computing the sequence of polyhedral edges
touching a shortest path, and the algebraic component, which requires computing the actual contact
points given the sequence of edges touching a shortest path. In 1986, Bajaj [3] showed the difficulty
of the algebraic subproblem by proving that, in the worst case, the contact points are defined by
high-degree irreducible polynomials. A little later, Canny and Reif [4] proved that the combinatorial
subproblem is NP-hard, and thus even computing the edge-sequence of a shortest path is intractably
difficult.

It is therefore natural to consider approximation algorithms for the three-dimensional shortest
path problem. The first general result in this direction is due to Papadimitriou [15], who gave an
O(n4(L + log(n/e))2/e 2) time algorithm for computing a path of length (1 + e) times the optimal;
L is the number of bits of precision in the model of computation. Another algorithm, due to Clark-
son [7], computes a (1 + e)-optimal path in roughly O(n2polylogn/e 4) time. Recently, Choi et al. [6]
tightened the analysis of Papadimitriou's algorithm, removing several gaps and inconsistencies in the
process.

In this paper, we address the problem of finding a shortest path on the surface of a convex polytope
in three dimensions. Despite its apparent simplicity, the shortest path problem for convex polytopes
turns out to be highly nontrivial and rich in mathematical lineage. Shortest paths on a polyhedron
(convex or nonconvex) possess a pleasing property called unfolding, which allows one to compute
an optimal path in polynomial time. As a result, this special case of the shortest path problem has
received considerable attention in computational geometry. (Within mathematics as well, the unfolding
of convex polyhedra is a rich topic with a distinguished history - see, for instance, [1].)

Our main result is a very simple and practical algorithm for computing an approximation to the
shortest path. Formally, let P denote a convex polytope with n vertices in I[~ 3, and let dR(p, q) denote
the length of a shortest path on the surface of P between the points p and q. The quantity dR(p, q) is
also called the geodesic distance between p and q. We propose an O(n) time algorithm for computing
a path of length at most 2de(p, q) for any two points p and q on the surface of P. Extending this
result, we design an O(n log n) time algorithm to approximate the geodesic distances between a fixed
source point x and all the vertices of P. The latter can be viewed as an approximation of the geodesic
tree of P rooted at x.

We regard simplicity and efficiency as the main virtues of our algorithms. Our algorithm computes a
shortest path between two points in O(n) time, contrasting with the O(n 2) time required by all known
algorithms for computing an exact shortest path [5,13,14]. Many applications (e.g., interactive) simply
cannot afford quadratic time for computing an exact shortest path. Having a fast and simple algorithm
that returns a good path, with a provable worst case guarantee, is not only quite adequate, but can
be desirable in these applications. Likewise, a fast approximation algorithm may be used as a filter
for an exact algorithm: source/destination pairs may be selected from among several candidates based
on their approximate shortest path lengths, with exact distances computed only for pairs that meet
certain length criteria. While the worst-case approximation ratio of our algorithm is two, we suspect
that except for pathological instances, the actual ratio is much better, so the penalty of approximation
is quite low. Additionally, in cases where the input polytope is already an approximation, a slower but
exact algorithm ultimately doesn't do much good either.

J. Hershberger, S. Suri / Computational Geometry 10 (1998) 31-46 33

Most exact algorithms (and our approximation algorithm as well) rely on the technique of "unfold-
ing" to compute a shortest path. Unfolding, while simple and elegant in concept, can be numerically
expensive because it's essentially a rotation in 3-space. Exact algorithms can perform chains of un-
folding involving as many as O(n) faces, leading to numerical instability. By contrast, our algorithm
unfolds chains of at most three faces, which may significantly limit potential numerical problems.

This paper has five sections. In Section 2 we show that the bounding box, a common practical
device, is a bad approximation tool for shortest paths in the worst case. Sections 3 and 4 describe our
algorithms for approximating a single path and a shortest path tree, respectively. We finish with some
closing remarks in Section 5.

2. Where bounding boxes fail

The bounding box is a valuable concept that is also used widely in practice. Given a set of points
S E N 3, its bounding box is the smallest axis-parallel rectangular solid containing S. Because a
bounding box has only a constant number of vertices, edges and faces, many practical algorithms use
it as a first-order approximation for S. Particularly in robotics and motion planning, the use of bounding
boxes is often unavoidable because of the immense combinatorial complexity of the "configuration
space". So, for instance, a typical algorithm for intersection-detection between polyhedra uses bounding
boxes to quickly winnow out large numbers of pairs that do not intersect.

Given the widespread use of bounding boxes, it is only natural to ask if they are also good for
approximating shortest paths on convex polytopes. Formally, let P denote a convex polytope in R 3
with n vertices. Let B denote the bounding box of P . Given two points p, q on the surface of P , we
want to know if the shortest path between p and q on the surface of B is a close approximation of the
shortest path on P. We need a (trivial) modification of B to ensure that p, q also lie on /3 . Let Hp
and Hq denote two planes containing p and q, respectively, and supporting P on one side. Let H +

and H + denote the halfspaces defined by these planes containing the polytope P. Let

/3(p,q) = / 3 V I H + N H +.

We call B(p, q) the bounding box of P for the pair (p, q). Observe that/3(p, q) has at most two more
faces than /3 and, of course, P C_/3(p, q). Let dB(p, q) denote the shortest path distance between p
and q on the surface of B(p, q). The question we want to address is this: what is the least upper bound
on the ratio dB(p, q)/dp(p, q) in the worst case?

It can easily be shown that in two dimensions (shortest paths on a convex polygon) the ratio
dB(p, q)/de(p, q) is bounded by v/2. Unfortunately, the bounding box stops being a useful approxi-
mation tool for shortest paths in three dimensions. The following lemma shows that the approximation
ratio is unbounded.

Lemma 2.1. For any c > O, there exist a convex polytope P E N 3 and two points p, q E P such that

dp(p,q)
dB (p, q)

Proofi The construction is shown in Fig. 1. The polyhedron P is a thin, rectangular tube whose cross
section is a square with side length c/2. P is oriented at 45 ° from the origin so that its major axis

34 J. Hershberger, S. Suri / Computational Geomet~ 10 (1998) 31-46

A

Di

B

Fig. 1. A bad example for approximation via the bounding box.

coincides with one of the major diagonals AB of the unit cube. The source and destination points p
and q lie on the faces opposite vertices C and D, respectively, so that de(p, q) <~ c.

The bounding box/3(p, q) is obtained by slicing the cube with planes parallel to the top and bottom
faces of P . It is easily checked that the worst-case length of a shortest path from p to q on B(p, q) is
greater than 1. The ratio dp(p, q)/dB(p, q) is therefore at most c, which proves the lemma. []

One may try to salvage the bounding-box idea by considering more carefully constructed "bounding
boxes". A more clever choice of a bounding box, for instance, may be the following: project P on
each of the three axis planes; compute a smallest enclosing rectangle (not necessarily axis-parallel)
for the projection in each plane; l e t /3 be the common intersection of three prisms erected on these
rectangles. This modified box solves the case in Fig. 1. Another alternative is simply to choose a
smallest (volume-wise) rectangular solid containing P, without regard to coordinate axes; a caveat to
this last suggestion is that computing such a box itself is a nontrivial problem. By replacing the long,
thin rectangular polytope P of Fig. 1 by a disc-shaped polytope resembling a "thickened" regular
n-gon, we can show that any constant-size approximating polyhedron whose shape is independent
of the position of source and destination points on their faces fails to give a good bound on the
approximation in the worst case.

3. Approximating a shortest path

3.1. Definitions and conventions

Let P be a convex polytope with n vertices in R 3. We are interested in computing shortest paths on
the surface of P. Unless otherwise stated, the notation x E P means a point x lying on the surface of
P. Given two points p, q ~ P, a shortest path between them on the surface of P is denoted 7rp(p, q),
and its length is defined to be the shortest path distance of p and q on P , denoted dp(p, q).

A key geometric concept in our approximation algorithm is the notion of a wedge defined by two
or three planes. In order to introduce the idea of a wedge, we first need a few more definitions. By
convention, for any plane H not properly intersecting P , the positive halfspace H + defined by H is
the one containing P. Furthermore, the normal z/ for a plane H is assumed to be directed into the
positive halfspace H +.

J. Hershberger, S. Suri / Computational Geometry. 10 (1998) 31-46 35

(a)

Jl 1

(b) (c)

Fig. 2. (a) A 2-plane wedge, (b) and (c) two possible 3-plane wedges.

Let Hi, //2 be two planes, each containing P in its positive halfspace. The dihedral angle formed
by H1 and H2 in their positive quadrant is denoted a(Hl, H2). A 2-plane wedge W(HI,//2) is the
two-dimensional surface of the (unbounded) convex polyhedron H + N H+; this convex polyhedron
is the positive quadrant formed by Hi, //2. A 3-plane wedge W(H1, M, H2) is the surface of the
convex polyhedron H + A M + A H + where the plane M satisfies the additional condition a(H~, M) =
a (M, H2); that is, M makes equal dihedral angles with H1 and H2. Fig. 2 illustrates these wedges.

3.2. Horizon edges and planes

Let fp and fq denote the faces of P containing the source p and the destination q, respectively; if
either point lies on more than one face, we arbitrarily pick one. Let Hp and Hq be the planes defined
by the faces fp and fq, and let ~p, ~?q he the corresponding unit normals. (Hp, Hq are the affine spans
of the faces fp and fq, respectively.) Let ~z be the unit vector corresponding to the positive z-axis.
We rotate the coordinate system so that

i.e., the normals 7/p and ~Tq make complementary angles with the vertical axis. (This also means that
Hp and Hq make equal dihedral angles with any plane parallel to gz.) Our 3-plane wedges will be
formed by Hp, Hq, and a plane parallel to gz. In the following, we describe a minimal family of these
latter planes.

In order to simplify our discussion, we assume that no face of P is vertical; this condition is
easily enforced, if necessary, by a symbolic perturbation (rotation) of the coordinate system. Thus,
the face-normals for all the faces of P have nonzero dot product with ~z. Call a face f positive if
~ f " / , z > 0 , and negative otherwise. Let $ = {el, e2,. • • , ek} be the set of edges forming the boundary
between the positive and negative faces of P. We call these edges the horizon edges of P. Let Hi be
a vertical plane passing through the edge ei, and define 7-/ = {H1, H2•... ,Ilk}, where k ~< n. We

k
call elements of ~ the horizon planes of P. (Observe that the polyhedron Ni=l H+ is a vertical prism
whose intersection with a horizontal plane is the vertical shadow of P.) Each of the planes Hi also
satisfies a(Hp, Hi) = a(Hi, Hq), and therefore determines a valid 3-plane wedge with Hp and Hq.

36 J. Hershberger, S. Suri / Computational Geomet~ 10 (1998) 31-46

In the following subsection, we describe our approximation algorithm for computing a shortest path
on P. The algorithm computes a path on a wedge, either a 2-plane or a 3-plane wedge, in the exterior
of P. In Section 3.5, we describe a procedure for mapping this path onto the surface of P without
increasing its length.

3.3. The algorithm

P is a convex polytope in R 3, and we want to approximate the shortest path distance between two
points p, q E P.

ALGORITHM SHORTESTPATH

1. If the dihedral angle a(Hp, Hq) ~ 7r/3, then compute the shortest path distance
d0(p, q) between p and q on the 2-plane wedge W(Hp, Hq). Output d0(p, q) and
stop.

2. For each plane Hi in the horizon family {H1, H2, . . . , /a rk} do
Compute the shortest path distance d~(p, q) between p and q on the 3-plane
wedge W(Hp, Hi, Hq).

3. Output minl~<i~<k di(p, q) and stop.

3.4. Proof of correctness

We begin with an elementary geometric lemma, which forms a crucial part of our proof.

L e m m a 3.1. Let gl and g2 be two rays originating from a point o, making an angle 0 at o, where
0 < 7r, and let p ¢ gl and q C g2 be two arbitrary points. Then we have the following bound."

op ÷ oq 1
- - ~

p--q sin (0/2)

Equality holds if and only if O-tip = ~q.

Proof. If b--f = ~qq, then clearly b--pp + b-qq = ~--q/sin (0/2). Let us therefore assume, without loss of
generality, that b-qq ¢ O-fi, and that the horizontal line ox bisects the a n g l e / p o q . Let s denote the point
where pq intersects ox. See Fig. 3 for illustration. We have the following inequalities:

- - + - - - ~< max (~ ~qq). (1)
op oq @ + oq ~p Wq

P-q - - + - - ps sq

Assume, without loss of generality, that b--p/fig ~< b--qq/~g. Let r denote the reflection of q in the line
ox; thus, @ = vg.

1 o r + oq or + oq o-~ O-pp + - - _ - - > _ _ - - _ _ > / oq

sin (0/2) r--q rs + sq sq pq

where the last inequality follows from (1). This completes the proof. []

J. Hershberger, S. Suri / Computational Geometry 10 (1998) 31-46 37

l I
p / rr

0 /"'" X

12

Fig. 3. Illustration for the proof of Lemma 3.1.

The following lemma shows that the shortest path distance d0(p, q) computed in Step 1 of the
algorithm gives the desired approximation.

Lemma 3.2. d0(p, q)/dp(p, q) ~< 1/sin (a/2), where ~ = a(Hp, Hq).

Proof. The proof depends on two facts: first, the shortest path 7r0(p, q) computed on the wedge
W(Hp, Hq) makes an angle 0 ~> c~ at the boundary line g = Hp N Hq, and second, dR(p, q) >/p-q. The
second fact is trivial; we prove the first as follows. Let p' and q', respectively, be the points on the line
g such that pp' and qq' are perpendicular to g, and let o be the point where the shortest path 7r0(p, q)
touches the line g. Then, unfolding and the triangle inequality imply that o lies in the closed interval
[p', q'] on g. Elementary geometry shows that Zpoq >>, a, for every point o E ~o', q']. The lemma now
follows from applying the bound in Lemma 3.1 on the triangle Apoq. []

Since Step 1 of the algorithm ShortestPath applies only when a(Hp, Hq) >>, 7r/3, the preceding
lemma gives the bound do(p, q)/dp(p, q) ~< 2. The next two lemmas concern the approximation via
3-plane wedges.

Lemma 3.3. The dihedral angle formed between a horizon plane Hi E 7-[and the source-destination
planes Hp, Hq always satisfies the following bounds:

- +
2 <~ ~(Hp, Hi) <<. 2

Proof. The vector dot product is invariant under a rigid motion of the space, and so we may choose
the initial rotation that makes (zip- ~z) = -(ziq • ~z) in such a way that vectors Zlp and ziq lie in the
YZ-plane, in symmetrical position with respect to the Y-axis. (The points Zip , ~?q, and the origin 0
define a unique plane, which we may take to be the YZ-plane. Now, take the line bisecting the angle
between zip and ziq as the Y-axis, and take the orthogonal line that passes through 0 in the YZ-plane
as the Z-axis.) In this coordinate system, let /3 be the angle between zip and gz. Then observe that
zip" ~z = cos/3, a n d a(Hp, Hq) = 2/3. In rectangular coordinates, the normals zip and ziq may be written
as zip = (0, sin/3, cos/3), and ziq = (0, s in /3 , - cos/3). If ~7i denotes the unit normal for the horizon

38 J. Hershberger, S. Suri / Computational Geometry 10 (1998) 31-46

plane Hi, then we may write zli = (cos0, sin0,0), for some 0 ~< 0 ~< 27r. The dot-product of ~/i with
~/p, ~/q gives

~ p • z/i = ~Tq "~/i = s i n / 3 sin 0.

As 0 varies in [0,27r], this dot product varies in the range [-sin/3, sin/3]. Since ~p • z/i =
-cos(a(Hp, Hi)), the dihedral angle a(Hp, Hi) is bounded between cos-l (sin /3) = 7r/2 - / 3 and
c o s - l (- sin/3) = 7r/2 +/3. This yields the desired result, since/3 = (1/2)a(Hp, Hq). []

Notice that since a(Hp, Hi) = a(Hq, Hi), the same bounds also hold for a(Hq, Hi).

Lemma 3.4. The condition a(Hp, Hq) < 7r/3 implies that

min di (p , q) <<,2.
l<.i<.k dp(p, q)

Proofi Consider a shortest path 7rp(p, q). It must cross at least one horizon edge: every path joining a
point on a positive face to a point on a negative face crosses the horizon. Let ri be a point of crossing,
and let ei be the edge of P containing ri. See Fig. 4. We focus on the 3-plane wedge path 7ri(p, q)
computed by our approximation algorithm in Step 2. Let this path be (p, xl, x2, q), where xl and x2
are the two interior vertices of 7ri(p, q); observe that xl E Hp fq Hi and x2 E Hq fq Hi.

Join ri to some interior point r ~ on the segment xlx2, and assume that r" is a point for which
the function f (r) = ~ + ~-g is minimized as r varies along the segment r S . Let 7ro(p,r") and
7r0(q, r"), respectively, denote the shortest paths on the 2-plane wedges W(Hp, Hi) and W(Hi, Hq).
By Lemma 3.3, the dihedral angle in each of these wedges is at least 7r/3, since a(Hp, Hq) < 7r/3.
Lemma 3.1 therefore implies the following hound:

max (d°(P ' r") do(q, r") ~ 1
k. ~ ' ~] ~< sin(Tr/6) - 2 "

On the other hand, elementary algebra shows that

(do(p, r n) do(q, r") ~ do(p, r") + d0(q, r")
max ~ - -

k. pr n ' ~] ~ pr n + qr n - -

The lemma follows from inequalities (2) and (3). []

(2)

di(p, q) di(p, q)
~> (3)

pri + ~q dp(p, q)"

In conclusion, we have the following lemma.

Fig. 4. Proof of Lemma 3.4 (the figure is rotated 90°).

J. Hershberger, S. Suri / Computational Geometry. 10 (1998) 31-46 39

Lemma 3.5. For any pair of points p, q E P, the algorithm ShortestPath correctly computes a path
in the exterior of P of length at most 2dp(p, q).

3.5. Mapping approximate paths onto P

The algorithm ShortestPath computes paths on a 2-plane or a 3-plane wedge in the exterior of P.
We show here how to convert such a path into a path lying on the surface of P without increasing its
length.

First, consider the 2-plane wedge W(Hp, Hq) and a shortest path d0(p, q) on it. This path touches
the line g = Hp A Hq at a point r. The three points p, q, r determine a unique plane H that intersects
P in a convex polygon C(p, r, q). This polygon gives two paths between p and q on P, and we take
the shorter one of these as our approximation path.

In the case of a 3-plane wedge W(Hp, Hi, Hq), we apply this procedure twice to project the path
7ci(p, q) onto P. Let the path 7ri (p, q) be (p, x l, x2, q), where x l E Hp N Hi and 372 E Hi N Hq. Suppose
for the moment that the segment XlX2 touches P at a point y. In this case we project the 2-plane
paths (p, xl, y) and (y, x2, q) onto P independently, then concatenate the two projected paths at y to
get the final path. If xlx2 does not touch P, then we replace (p, xl,x2,q) by a shorter 3-plane path
that does touch P, and then project that path onto P. Let Xll be the point on the segment pxl such
that the segment xllx2 is tangent to the surface of P at a point y. We can compute x] by finding a
tangent from x2 to the polygon C(p, xl, x2) in the plane determined by p, Xl, and x2. By the triangle
inequality, the path (p, x], x2, q) is shorter than (p, xl, x2, q). We project the 2-plane paths (p, x], y)
and (y, x2, q) onto P independently, then concatenate them at y to get the final path, as in the first
case.

The following lemma shows that our method of projecting a path from a wedge to P does not
increase the length of the path.

Lemma 3.6. Let Aabc be a triangle in the plane, and let R = (b, r l , r2 , . . . , r k , c) be a convex
polygonal chain contained in Aabc. Then the total length of the chain R does not exceed ab + -d-d.

Proof. We use induction on the number of internal vertices in the chain R. The base case (k = 0)
follows trivially from the triangle inequality: bc <, ab + ~d. Inductively assume that the lemma holds
for k - 1 internal vertices, for k ~> 1. Let ri, where 1 ~< i ~< k, be an extreme vertex of R in the
direction perpendicular to bc, and let bici be the maximal chord passing through ri and parallel to bc.
See Fig. 5.

Then, by induction, we have the following inequalities:

biri + ~ ~ abi + aci,
i--I

brl + E rjrj+l ~ bbi + biri,
j = l

k -1

E rjrj+l V ~ ~ cic. + <~ +
j =i

and

a

40 J. Hershberger, S. Suri / Computational Geometry 10 (1998) 31-46

b c

Fig. 5. Illustration for Lemma 3.6.

Combining the three inequalities above, we get our result:

k-1

j = l

This completes the proof. []

3.6. Time complexity

Shortest paths on a convex polyhedron obey what is known as the "unfolding rule": if we unfold the
sequence of faces through which a shortest path passes onto a plane, then the shortest path becomes
a straight line. The following lemma states this fact more formally; a proof may be found in [17].

Lemma 3.7 (Unfolding rule). Let 19 be a polyhedron in 3-space, and let p, q be two points on the
surface o f 19. Let fp, f b f 2 , . . . , fk, fq be the sequence o f faces o f 19 crossed by the shortest path
7rp(p, q). I f we unfold the faces f l , . . . , fk, fq in sequence until they all become coplanar with fp,
then the shortest path 7rp(p, q) unfolds to a straight line.

Using the "unfolding rule", we can compute a shortest path on a 2-plane or a 3-plane wedge in
constant time; these wedges are convex polyhedra with a constant number of faces. The algorithm
ShortestPath computes one shortest path on a 2-plane wedge, and one shortest path on each of the O(n)
3-plane wedges. The computation necessary to determine the horizon edges and the horizon planes
is clearly O(n). Using the method in Section 3.5, the approximate path computed by the algorithm
ShortestPath can be mapped to a path on 19 in O(n) time. We thus have the following theorem.

Theorem 3.8. Given a convex polytope 19 o f n vertices and two points p, q E 19, one can compute in
O(n) time a path o f length at most 2dp(p, q) joining p and q on the surface o f P.

J. Hershberger, S. Suri / Computational Geometry 10 (1998) 31-46 41

4. Approximating a shortest path tree

In this section, we show how to approximate shortest path distances to all vertices of P from a
fixed point p E P in O(n log n) time.

4.1. Northern and southern hemispheres

Without loss of generality, we assume that the face containing p, namely fp, is horizontal, with P
lying below it. Thus, the face normal r/p is directed toward the negative z-axis. We choose a threshold
angle w < 7r, and define the southern hemisphere of P, denoted S(w), to be the set of faces s satisfying

rip- ~s ~< cos (Tr - ~) .

In other words, for each face s in the southern hemisphere S(w), we have a(Hp, Hs) <~ a~, whereas
each face in the northern hemisphere N(w) forms a dihedral angle greater than co with Hp. Fig. 6
shows an example in two dimensions. We leave the value of cv undetermined for now and optimize it
at the end.

Lemma 4.1. For every vertex v E P lying in the northern hemisphere N(w) or on the boundary
between northern and southern hemispheres, the shortest path distance computed on the 2-plane
wedge W(Hp, Hv) is at most dp(p, v)/ sin (aJ/2).

Proof. The claim follows immediately from Lemma 3.2. []

Since a shortest path on a 2-plane wedge can be computed in constant time, the approximate
distances to all northern-hemisphere vertices can be determined in O(n) time. The remainder of this
section deals with the southern-hemisphere vertices.

4.2. Subdividing the horizon

The boundary between the southern and northern hemispheres is a polygonal chain consisting of
vertices and edges of P. Let sl, s 2 , . . . , Sk denote the counterclockwise sequence of vertices forming

Hp p

co *

N b

Fig. 6. A two-dimensional illustration of hemispheres. The bottom part of the polygon between the vertices a and b, drawn
in thick ink, constitutes the southern hemisphere S(a;); the top part is the northern hemisphere.

42 J. Hershberger, S. Suri / Computational Geometry 10 (1998) 31-46

this boundary chain; thus, the sequence of edges along the boundary chain is 8182,... , 8k_lSk, 8k81.
Let Hi, i = 1,2, . . . , k, denote the (unique) plane that (1) contains sisi+l, (2) is tangent to P, and (3)
satisfies c~(Hp, Hi) = co. (These planes are similar to the horizon planes of Section 3.)

Our algorithm requires that the angles Zs ips i+l be small. In order to ensure that, we subdivide
the boundary chain by adding extra points on the segments 8i8i+1, as explained below. Let c > 0
be an arbitrarily small but positive constant; this constant controls the quality of our approximation.
Consider a triangle Asips i+l , and let Oi = Zs ips i+ l . If the condition

i ~ + sin Oi
- - sin Oi < 1 + c, (4)

does not hold, then we subdivide the edge sisi+l by adding a new vertex ti at its midpoint. Otherwise,
we leave the segment 8i8i+ l alone. This process is repeated until all the edges in the boundary chain
satisfy the c-condition of inequality (4).

Since c is a fixed constant, it follows easily that an edge sisi+l of the original boundary chain can
be subdivided at most a constant number of times. So, let ti, t2 , . . . , t ,~ , where rn = O(n), be the
final sequence of vertices along the boundary chain separating the northern and southern hemispheres.
We can approximate shortest path distances to all vertices of the boundary chain using the 2-plane
wedges W(Hp, Hi). The dihedral angle bound co = c~(Hp, Hi) ensures that the approximation is within
1/sin (a~/2) of the true shortest path distance. (Notice that for a boundary chain vertex t that is also
a vertex of the polytope, there are two possible wedges, determined by the two edges incident to t.
In this case, we may choose the shorter approximation, although our proof does not use this fact. All
other vertices of the boundary chain lie in the interior of polytope edges, and we have a single 2-plane
wedge approximation for them.) Let w(ti) denote the approximate distance between p and ti. By
Lemma 3.2, this approximation satisfies w(ti) <. dp(p, ti)/sin (a~/2). We are now ready to describe
our algorithm for approximating distances between p and all the vertices in the southern hemisphere.

ALGORITHM SOUTHERNHEMIDIST

1. Determine the north and south hemispheres, N(~) and S(~), of P.
2. Subdivide the boundary chain between N(~) and S(~), so that each wedge obeys

the c condition in (4).
3. Using 2-plane wedge unfoldings, compute approximate distances from p to all

vertices of the subdivided boundary chain T = { t l , ~ 2 , . • . , ~ r n } . Let w(ti) be the
approximate distance from p to ti.

4. Vertically project onto the plane z = 0 all the boundary vertices ti, / = 1 , 2 , . . . , rn,
as well as the vertices of the southern hemisphere S(aJ). Let t ~ denote the projec-
tion of a point t.

5. Compute the (additive) weighted Voronoi diagram of the set T' = {t~, t ~ , . . . , t~},
using w(ti) as the weight of t~. Preprocess the diagram for point location queries.

6. For each vertex v E S(aJ), locate its projected image v ~ in the Voronoi diagram.
7. Let t~ E T ~ be the (weighted) nearest neighbor of v ~. Compute the shortest path

between v and ti on the 2-plane wedge W(Hv, Hi). Let do(v, ti) be this distance.
Output w(ti) + do(v, ti) as the approximation of the distance de(p, v).

J. Hershberger, S. Suri / Computational Geometry 10 (1998) 31--46 43

4.3. Analysis o f the algorithm SouthernHemiDist

We prove two purely geometric lemmas: the first one shows that, for any two points u, v E S(oz),
- - V ! uv <. u ' v ' / c o s oz, where u ~, are the projections of u, v on a horizontal plane; the second one bounds
the increase in path-length when a path is constrained to go through one of the boundary-chain vertices.

L e m m a 4.2. Let u, v E P be two points in the southern hemisphere S(oz), and let u', v' be their
projections on the plane z = O. Then ~ <. u~v~/ cos oz.

Proof. Without loss of generality, assume that uz <~ Vz. By vertical translation, we may also assume
that Uz -- 0, and thus u = u'. We claim that the angle / vuPv t <<, oz. The lemma then follows readily
by considering the triangle Avu'v': u'v' /~-~ = cos(/ v u ' vt).

The bound on the angle ~ruby ~ follows from the observation that the plane Hv that is tangent at v
makes a dihedral angle of at most oz with the horizontal plane Hp, and u lies above Hr . []

L e m m a 4.3. Let Aaob be a triangle with Og <~ ob and Zaob = O. Then we have

o-~ + ab + sin 0
--

Proof. Let o~ denote the a n g l e / o a b . See Fig. 7 for illustration. The Law of Sines gives the following
equality:

o---d + ab sin(Tr - 0 - &) + sin 0

ob sin c~

To maximize this quantity, we differentiate with respect to c~, obtaining

d //sin(0 + c ~) + sin 0"~ - s i n 0 (1 + cosc~)

dc~ sm c~ (sin c~) 2 '

which is always non-positive. Thus, the ratio (b-6 + ab)/(ob) diminishes as & increases, and it is
maximized at the smallest legal value of c~. The condition ~ ~< ob forces that c~ ~> 7r/2 - 0, which in
turn gives

o-g + ab sin(:r/2) + sin 0 1 + sin 0 + sin 0

o--~-~ ~< s i n (T r / 2 - 0) - cos0 - - s i n 0 ~< l + e .

This completes the proof. []

Fig. 7. Illustration for Lemma 4.3.

44 J. Hershberger, S. Suri / Computational Geometr 3, 10 (1998) 31-46

We are now ready to prove our approximation result for the algorithm SouthernHemiDist. Consider
an arbitrary vertex v in the southern hemisphere S(~) , and its shortest path to p, namely 7rp(p, v).
This path crosses the boundary chain; let r be a point of crossing, and suppose that ti and ti+l are
the vertices in the boundary chain adjacent to r. Then, the following bounds clearly hold:

dR(p, v) = dp(p, r) + dp(r, v) >~ • + ~-~. (5)

By unfolding along the edge titi+l, let us make the triangles Atipti+l and Ativti+l coplanar, and
consider the plane quadrilateral (p, ti, v, ti+l). If

(~-T + ~--~) >~ min { (pti + vti), (pti+, + vti+l)},

then assume, without loss of generality, that

p---f + ~ >~ pti + vti. (6)

Otherwise, elementary geometry shows that the quadrilateral (p, ti, v, t i+l) is necessarily convex. In
this case, we apply Lemma 4.3 and inequality (4) to the triangle Aptiv. Since Atipti+l satisfies the
e-condition and Atipv < Atipti+l, we have

pti + vti
p--T + ~ / > ~ ~> (7)

l + c

in the unfolded plane. Finally, recalling that v ~ and t~ denote the projections of v and ti onto the plane
z = 0, we have the trivial inequality vti >~ v~t~. By combining (5)-(7), we get the following bound
for dp(p, v):

dp(p, v) >~ pti + v't~ (8)
l + c

Since a(Hp, Hi) = a J , Lemma 3.2 implies the following bound for the approximate shortest path
distance w(ti) = do(p, ti) between p and ti computed in Step 3:

pt~ >1 do(p, ti) sin (co/2). (9)

Since v and ti are both in the southern hemisphere, it is easily seen that a(Hv, Hi) >~ ~r - 2c~.
Hence the approximate shortest path distance do(v, ti), computed on the 2-plane wedge W(Hv, Hi),
satisfies the following bounds:

v't----~-~i >~ vt~ >~ do(v, ti) sin(Tr/2 - w) = do(v, ti) cosw. (10)
COS 03

Plugging (9) and (10) into (8), we get

do(p, ti) sin (aJ/2) + do(v, ti)(cosw) e
dp(p, v) >.

l + c

By setting sin(w/2) = (cosw) 2, we get w ~ 49.62 °, corresponding to sin(w/2) ~ 0.41964. This
gives the desired ratio for the approximation path 7r0(p, ti) U 7ro(ti, v):

do(p, ti) + do(ti, v)
~< 2.38(1 + c).

dp(p, v)
Since the algorithm SouthernHemiDist picks the minimum do(p, ti) + v~t~ over all choices of ti, it

follows that the approximate path is at most 2.38(1 + ~) times the length of the shortest path.

J. Hershberger, S. Suri / Computational Geometr)., 10 (1998) 31-46 45

The running time of the algorithm is bounded by O(n logn) : the dominant steps are 5 and 6,
in which an additive-weight, planar Voronoi diagram is computed and O(n) point location queries
are performed. (A good reference on Voronoi diagrams is the survey paper by Aurenhammer [2].
The point location algorithms are described in [8,11,16].) We have proved the following theo-
rem.

Theorem 4.4. Given a convex polytope P o f n vertices, a source point p E P, and a f ixed constant
e > O, we can compute in O(n logn) time approximate distances between p and all vertices o f P. The
approximation factor is no worse than 2.38(1 + e).

5. Related problems and concluding remarks

Our algorithms can be used to get a very simple, though weak, approximation of a shortest path
in the general case of multiple polyhedra as well. Specifically, using Theorem 3.8, we can get a path
of length at most 2k times the optimal if there are k (disjoint) convex polyhedra. The algorithm
runs in O(n) time, where n is the total number of vertices in all the polyhedra. This is an order of
magnitude faster than the general approximation algorithms of Choi et al. and Clarkson, although our
approximation bound is much worse than the (1 + c) factor achieved by [6,7].

In summary, we have presented fast, simple, and quite practical methods for approximating shortest
paths on a convex polyhedron. We believe that the algorithm ShortestPath is at least as easy to
understand and implement as any of the known exact algorithms, and easier than most. However,
we have not implemented it ourselves, so this is simply a value judgment. Since this paper originally
appeared, Har-Peled et al. [9] have extended our work and obtained a (1 + e)-approximation algorithm.
Our work has also opened up the possibility that a similarly simple and efficient algorithm might be
possible for nonconvex polyhedra, though none has been found to date.

We believe that the actual ratio achieved by our algorithm ShortestPath is better than 2, but we
have not been able to prove this; the claim concerns the actual path reported on P, not the wedge-path
that is used for the purpose of analysis. The same holds for the shortest path tree approximation.
An open problem is to either tighten the analysis and improve the approximation ratio, or provide
a lower-bound example for which the performance of our approximation algorithm is close to the
claimed bound.

Several other open problems are suggested by our work. Is it possible to achieve a ratio of (1 + e),
for any fixed c > 0, for a single shortest path using roughly linear time? Is it possible to improve
substantially the ratio of 2k in the general case of k convex polytopes, without significantly sacrificing
the running time or the simplicity of our approach?

Acknowledgements

We thank Pankaj Agarwal and Boris Aronov for some discussions on the subject of this paper. They
have independently derived results similar to Theorem 3.8 of our paper.

46 J. Hershberger, S. Suri / Computational Geometry 10 (1998) 31-46

References

[1] EK. Agarwal, B. Aronov, J. O'Rourke, C. Schevon, Star unfolding of a polytope with applications, Technical
Report 031, Dept. Comput. Sci., Smith College, Northampton, MA, July 1993.

[2] E Aurenhammer, Voronoi diagrams: A survey of a fundamental geometric data structure, ACM Comput.
Surv. 23 (1991) 345-405.

[3] C. Bajaj, The algebraic complexity of shortest paths in polyhedral spaces, in: Proc. 23rd Allerton Conf.
Commun. Control Comput., 1985, pp. 510-517.

[4] J. Canny, J.H. Reif, New lower bound techniques for robot motion planning problems, in: Proc. 28th Annu.
IEEE Sympos. Found. Comput. Sci., 1987, pp. 49-60.

[5] J. Chert, Y. Hart, Shortest paths on a polyhedron, in: Proc. 6th Annu. ACM Sympos. Comput. Geom., 1990,
pp. 360-369.

[6] J. Choi, J. Sellen, C.K. Yap, Approximate Euclidean shortest path in 3-space, in: Proc. 10th Annu. ACM
Sympos. Comput. Geom., 1994, pp. 41-48.

[7] K.L. Clarkson, Approximation algorithms for shortest path motion planning, in: Proc. 19th Annu. ACM
Sympos. Theory Comput., 1987, pp. 56-65.

[8] H. Edelsbrunner, L.J. Guibas, J. Stolfi, Optimal point location in a monotone subdivision, SIAM J. Comput.
15 0986) 317-340.

[9] S. Har-Peled, M. Sharir, K.R. Varadarajan, Approximate shortest paths on a convex polytope in three
dimensions, in: Proc. 12th Annu. ACM Sympos. Comput. Geom., 1996, pp. 329-338.

[10] J. Hershberger, S. Suri, Efficient computation of Euclidean shortest paths in the plane, in: Proc. 34th Annu.
IEEE Sympos. Found. Comput. Sci., 1993, pp. 508-517.

[11] D.G. Kirkpatrick, Optimal search in planar subdivisions, SIAM J. Comput. 12 (1983) 28-35.
[12] T. Lozano-P6rez, M.A. Wesley, An algorithm for planning collision-free paths among polyhedral obstacles,

Comm. ACM 22 (1979) 560-570.
[13] J.S.B. Mitchell, D.M. Mount, C.H. Papadimitriou, The discrete geodesic problem, SIAM J. Comput. 16

(1987) 647-668.
[14] D.M. Mount, On finding shortest paths on convex polyhedra, Technical Report 1495, Department of

Computer Science, University of Maryland, MD, 1985.
[15] C.H. Papadimitriou, An algorithm for shortest-path motion in three dimensions, Inform. Process. Lett. 20

(1985) 259-263.
[16] EE Preparata, M.I. Shamos, Computational Geometry: An Introduction, Springer, New York, 1985.
[17] M. Sharir, A. Schorr, On shortest paths in polyhedral spaces, SIAM J. Comput. 15 (1986) 193-215.

