8 research outputs found

    A Taxonomy for and Analysis of Anonymous Communications Networks

    Get PDF
    Any entity operating in cyberspace is susceptible to debilitating attacks. With cyber attacks intended to gather intelligence and disrupt communications rapidly replacing the threat of conventional and nuclear attacks, a new age of warfare is at hand. In 2003, the United States acknowledged that the speed and anonymity of cyber attacks makes distinguishing among the actions of terrorists, criminals, and nation states difficult. Even President Obama’s Cybersecurity Chief-elect recognizes the challenge of increasingly sophisticated cyber attacks. Now through April 2009, the White House is reviewing federal cyber initiatives to protect US citizen privacy rights. Indeed, the rising quantity and ubiquity of new surveillance technologies in cyberspace enables instant, undetectable, and unsolicited information collection about entities. Hence, anonymity and privacy are becoming increasingly important issues. Anonymization enables entities to protect their data and systems from a diverse set of cyber attacks and preserves privacy. This research provides a systematic analysis of anonymity degradation, preservation and elimination in cyberspace to enhance the security of information assets. This includes discovery/obfuscation of identities and actions of/from potential adversaries. First, novel taxonomies are developed for classifying and comparing well-established anonymous networking protocols. These expand the classical definition of anonymity and capture the peer-to-peer and mobile ad hoc anonymous protocol family relationships. Second, a unique synthesis of state-of-the-art anonymity metrics is provided. This significantly aids an entity’s ability to reliably measure changing anonymity levels; thereby, increasing their ability to defend against cyber attacks. Finally, a novel epistemic-based mathematical model is created to characterize how an adversary reasons with knowledge to degrade anonymity. This offers multiple anonymity property representations and well-defined logical proofs to ensure the accuracy and correctness of current and future anonymous network protocol design

    Adaptive trust and reputation system as a security service in group communications

    Get PDF
    Group communications has been facilitating many emerging applications which require packet delivery from one or more sender(s) to multiple receivers. Owing to the multicasting and broadcasting nature, group communications are susceptible to various kinds of attacks. Though a number of proposals have been reported to secure group communications, provisioning security in group communications remains a critical and challenging issue. This work first presents a survey on recent advances in security requirements and services in group communications in wireless and wired networks, and discusses challenges in designing secure group communications in these networks. Effective security services to secure group communications are then proposed. This dissertation also introduces the taxonomy of security services, which can be applied to secure group communications, and evaluates existing secure group communications schemes. This dissertation work analyzes a number of vulnerabilities against trust and reputation systems, and proposes a threat model to predict attack behaviors. This work also considers scenarios in which multiple attacking agents actively and collaboratively attack the whole network as well as a specific individual node. The behaviors may be related to both performance issues and security issues. Finally, this work extensively examines and substantiates the security of the proposed trust and reputation system. This work next discusses the proposed trust and reputation system for an anonymous network, referred to as the Adaptive Trust-based Anonymous Network (ATAN). The distributed and decentralized network management in ATAN does not require a central authority so that ATAN alleviates the problem of a single point of failure. In ATAN, the trust and reputation system aims to enhance anonymity by establishing a trust and reputation relationship between the source and the forwarding members. The trust and reputation relationship of any two nodes is adaptive to new information learned by these two nodes or recommended from other trust nodes. Therefore, packets are anonymously routed from the \u27trusted\u27 source to the destination through \u27trusted\u27 intermediate nodes, thereby improving anonymity of communications. In the performance analysis, the ratio of the ATAN header and data payload is around 0.1, which is relatively small. This dissertation offers analysis on security services on group communications. It illustrates that these security services are needed to incorporate with each other such that group communications can be secure. Furthermore, the adaptive trust and reputation system is proposed to integrate the concept of trust and reputation into communications. Although deploying the trust and reputation system incurs some overheads in terms of storage spaces, bandwidth and computation cycles, it shows a very promising performance that enhance users\u27 confidence in using group communications, and concludes that the trust and reputation system should be deployed as another layer of security services to protect group communications against malicious adversaries and attacks

    On traffic analysis attacks and countermeasures

    Get PDF
    Security and privacy have gained more and more attention with the rapid growth and public acceptance of the Internet as a means of communication and information dissemination. Security and privacy of a computing or network system may be compromised by a variety of well-crafted attacks. In this dissertation, we address issues related to security and privacy in computer network systems. Specifically, we model and analyze a special group of network attacks, known as traffic analysis attacks, and develop and evaluate their countermeasures. Traffic analysis attacks aim to derive critical information by analyzing traffic over a network. We focus our study on two classes of traffic analysis attacks: link-load analysis attacks and flow-connectivity analysis attacks. Our research has made the following conclusions: 1. We have found that an adversary may effectively discover link load by passively analyzing selected statistics of packet inter-arrival times of traffic flows on a network link. This is true even if some commonly used countermeasures (e.g., link padding) have been deployed. We proposed an alternative effective countermeasure to counter this passive traffic analysis attack. Our extensive experimental results indicated this to be an effective approach. 2. Our newly proposed countermeasure may not be effective against active traffic analysis attacks, which an adversary may also use to discover the link load. We developed methodologies in countering these kinds of active attacks. 3. To detect the connectivity of a flow, an adversary may embed a recognizable pattern of marks into traffic flows by interference. We have proposed new countermeasures based on the digital filtering technology. Experimental results have demonstrated the effectiveness of our method. From our research, it is obvious that traffic analysis attacks present a serious challenge to the design of a secured computer network system. It is the objective of this study to develop robust but cost-effective solutions to counter link-load analysis attacks and flow-connectivity analysis attacks. It is our belief that our methodology can provide a solid foundation for studying the entire spectrum of traffic analysis attacks and their countermeasures

    Estudo e implementação de redes de comunicação anônima e aplicação ao sistema de votação digital OSTRACON

    Get PDF
    Dissertação (mestrado) - Universidade Federal de Santa Catarina, Centro Tecnológico. Programa de Pós-Graduação em Ciência da Computação.Em muitos casos de uso de sistemas em rede o anonimato da comunicação apresenta-se como um requisito desejado. Este trabalho tem como tema principal as técnicas para comunicação anônima. Para um melhor conhecimento do problema do anonimato foram pesquisadas formas de ataque ao anonimato, e mecanismos de defesa para tais ataques. As técnicas para comunicação anônima foram estudadas e avaliadas quanto a eficácia no combate aos ataques, e quanto ao provimento de comunicação anônima. Com base nas técnicas pesquisadas, foi proposta uma implementação de uma rede para comunicação anônima. Com a implementação realizada foi possível medir a performance da rede com ênfase nas operações criptográficas necessárias, e avaliar a aplicação prática da técnica escolhida no Sistema Ostracon, um sistema de votação digital desenvolvido no Laboratório de Segurança em Computação da Universidade Federal de Santa Catarina

    Improving security and efficiency of mix-based anonymous communication systems

    Get PDF
    The communication layer leaks important private information even in the presence of encryption, which makes anonymous communication a fundamental element of systems that protect the privacy of users. Traffic mixers have long been used to achieve communication anonymity, but the security challenges and the resulted inefficiencies hinder the path to a wide adoption of these systems. In this thesis, we take a step towards improving the security of traffic mixers and building a platform for efficient anonymous communication. We begin by revisiting Binomial Mix, which is one of the most effective designs for traffic mixing proposed to date, and the one that introduced randomness to the behaviour of traffic mixers. When thoroughly examined in different traffic conditions, Binomial Mix proved to be significantly more resilient against attacks than previously believed. We then build on the design of Binomial Mix and propose two new designs for traffic mixers. The first design, Multi-Binomial Shared-Pool Mix (MBSP Mix), employs multiple sources of randomness which results in a behaviour less predictable by the attacker and thus provides a higher degree of anonymity. The second design, Multi-Binomial Independent-Pool Mix (MBIP Mix), enables a single traffic mixer to anonymise multiple communication channels with potentially differing latencies. This additional property significantly improves the security and efficiency of the mix. Moving beyond the design of traffic mixers in isolation, we propose the architecture and details of a generic framework for anonymous communication. The proposed framework consists of various parts designed to enable the integration of various Anonymous Communication Systems as plug-in components into a shared and unified system. In addition to achieving a larger user-base and enjoying its associated security benefits, this approach enables the reusability of components across multiple communication systems. Finally, we also present techniques to make the circuit establishment facility of the framework resistant towards Denial-of-Service attacks. We believe that our work is one step towards building a fully developed generic framework for anonymous communication and our results can inspire and be used for the design of a robust generic framework

    An Optimal Strategy for Anonymous Communication Protocols

    Get PDF
    For many Internet applications, the ability to protect the identity of participants in a distributed applications is critical. For such applications, a number of anonymous communication systems have been realized over the recent years. The effectiveness of these systems relies greatly on the way messages are routed among the participants. (We call this the route selection strategy.) In this paper, we describe how to select routes so as to maximize the ability of the anonymous communication systems to protect anonymity. To measure this ability, we define a metric (anonymity degree), and we design and evaluate an optimal route selection strategy that maximizes the anonymity degree of a system. Our analytical and experimental data shows that the anonymity degree may not always monotonically increase as the length of communication paths increase. We also found that variable path-length strategies perform better than fixed-length strategies
    corecore